CELLULAR PROTEINS Hsp60 AND SAHH AS NEGATIVE REGULATORS OF EARLY STAGES OF HIV-1 REPLICATION
- Authors: Feigin S.E1, Kikhai T.F2,1, Agapkina Y.Y.2,1, Anisenko A.N1,2, Gottikh M.B2,1, Korolev S.P1,2
-
Affiliations:
- Lomonosov Moscow State University
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology
- Issue: Vol 90, No 11 (2025)
- Pages: 1754-1764
- Section: Articles
- URL: https://bakhtiniada.ru/0320-9725/article/view/362450
- DOI: https://doi.org/10.7868/S3034529425110134
- ID: 362450
Cite item
Abstract
Keywords
About the authors
S. E Feigin
Lomonosov Moscow State University119234 Moscow, Russia
T. F Kikhai
Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University119992 Moscow, Russia
Yu. Yu Agapkina
Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University119992 Moscow, Russia
A. N Anisenko
Lomonosov Moscow State University; Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University119234 Moscow, Russia; 119992 Moscow, Russia
M. B Gottikh
Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University119992 Moscow, Russia
S. P Korolev
Lomonosov Moscow State University; Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology; Lomonosov Moscow State University
Email: spkorolev@mail.ru
119234 Moscow, Russia; 119992 Moscow, Russia
References
- Brito, A. F., and Pinney, J. W. (2017) Protein-protein interactions in virus-host systems, Front. Microbiol., 8, 1557, https://doi.org/10.3389/fmicb.2017.01557.
- Martinez-Gil, L., Vera-Velasco, N. M., and Mingarro, I. (2017) Exploring the human-Nipah virus protein-protein interactome, J. Virol., 91, e01452-17, https://doi.org/10.1128/JVI.01461-17.
- Loregian, A., Marsden, H. S., and Palu, G. (2002) Protein-protein interactions as targets for antiviral chemotherapy, Rev. Med. Virol., 12, 239-262, https://doi.org/10.1002/rmv.356.
- Markovic, V., Szczepanska, A., and Berlicki, L. (2024) Antiviral protein-protein interaction inhibitors, J. Med. Chem., 67, 3205-3231, https://doi.org/10.1021/acs.jmedchem.3c01543.
- Phanuphak, N., and Gulick, R. M. (2020) HIV treatment and prevention 2019: current standards of care, Curr. Opin. HIV AIDS, 15, 4-12, https://doi.org/10.1097/COH.0000000000000588.
- Iversen, A. K., Shafer, R. W., Wehrly, K., Winters, M. A., Mullins, J. I., Chesebro, B., and Merigan, T. C. (1996) Multidrug-resistant human immunodeficiency virus type 1 strains resulting from combination antiretroviral therapy, J. Virol., 70, 1086-1090, https://doi.org/10.1128/jvi.70.2.1086-1090.1996.
- Shafer, R. W., Winters, M. A., Palmer, S., and Merigan, T. C. (1998) Multiple concurrent reverse transcriptase and protease mutations and multidrug resistance of HIV-1 isolates from heavily treated patients, Ann. Intern. Med., 128, 906-911, https://doi.org/10.7326/0003-4819-128-11-199806010-00008.
- Kozal, M., Aberg, J., Pialoux, G., Cahn, P., Thompson, M., Molina, J. M., Grinsztejn, B., Diaz, R., Castagna, A., Kumar, P., Latiff, G., DeJesus, E., Gummel, M., Gartland, M., Pierce, A., et al. (2020) Fostemsavir in adults with multidrug-resistant HIV-1 infection, N. Engl. J. Med., 382, 1232-1243, https://doi.org/10.1056/NEJMoa1902493.
- Hiryak, K., and Koren, D. E. (2021) Fostemsavir: a novel attachment inhibitor for patients with multidrug-resistant HIV-1 infection, Ann. Pharmacother., 55, 792-797, https://doi.org/10.1177/1060028020962424.
- Beccari, M. V., Mogle, B. T., Sidman, E. F., Mastro, K. A., Asiago-Reddy, E., and Kufel, W. D. (2019) Ibalizumab, a novel monoclonal antibody for the management of multidrug-resistant HIV-1 infection, Antimicrob. Agents Chemother., 63, e00110-19, https://doi.org/10.1128/AAC.00110-19.
- Blair, H. A. (2020) Ibalizumab: a review in multidrug-resistant HIV-1 infection, Drugs, 80, 189-196, https://doi.org/10.1007/s40265-020-01258-3.
- Segal-Maurer, S., DeJesus, E., Stellbrink, H. J., Castagna, A., Richmond, G. J., Sinclair, G. I., Siripassorn, K., Ruane, P. J., Berhe, M., Wang, H., Margot, N. A., Dvory-Sobol, H., Hyland, R. H., Brainard, D. M., Rhee, M. S., Baeten, J. M., and Molina, J. M. (2022) Capsid inhibition with lenacapavir in multidrug-resistant HIV-1 infection, N. Engl. J. Med., 386, 1793-1803, https://doi.org/10.1056/NEJMoa2115542.
- Tekeste, S. S., Wilkinson, T. A., Weiner, E. M., Xu, X., Miller, J. T., Le Grice, S. F., Clubb, R. T., and Chow, S. A. (2015) Interaction between reverse transcriptase and integrase is required for reverse transcription duringHIV-1 replication, J. Virol., 89, 12058-12069, https://doi.org/10.1128/JVI.01471-15.
- Brown, P. O. (1990) Integration of retroviral DNA, Curr. Top. Microbiol. Immunol., 157, 19-48, https://doi.org/10.1007/978-3-642-75218-6_2.
- Anisenko, A. N., Knyazhanskaya, E. S., Zalevsky, A. O., Agapkina, J. Y., Sizov, A. I., Zatsepin, T. S., and Gottikh, M. B. (2017) Characterization of HIV-1 integrase interaction with human Ku70 protein and initial implications for drug targeting, Sci. Rep., 7, 5649, https://doi.org/10.1038/s41598-017-05659-5.
- Rozina, A., Anisenko, A., Kikhai, T., Silkina, M., and Gottikh, M. (2022) Complex relationships between HIV-1 integrase and its cellular partners, Int. J. Mol. Sci., 23, 12341, https://doi.org/10.3390/ijms232012341.
- Agapkina, Y. Y., Ponomareva, T. Y., Vdovina, M. V., Ziganshin, R. H., Rozina, A. A., Anisenko, A. N., and Gottikh, M. B. (2025) New cellular partners of HIV-1 integrase and their role in viral replication, Dokl. Biochem. Biophys., 522, 279-284, https://doi.org/10.1134/S1607672925600149.
- Parissi, V., Calmels, C., De Soultrait, V. R., Caumont, A., Fournier, M., Chaignepain, S., and Litvak, S. (2001) Functional interactions of human immunodeficiency virus type 1 integrase with human and yeast HSP60, J. Virol., 75, 11344-11353, https://doi.org/10.1128/JVI.75.23.11344-11353.2001.
- Leh, H., Brodin, P., Bischerour, J., Deprez, E., Tauc, P., Brochon, J.-C., LeCam, E., Coulaud, D., Auclair, C., and Mouscadet, J. F. (2000) Determinants of Mg2+-dependent activities of recombinant human immunodeficiency virus type 1 integrase, Biochemistry, 39, 9285-9294, https://doi.org/10.1021/bi000398b.
- Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248-254, https://doi.org/10.1016/0003-2697(76)90527-3.
- Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 227, 680-685, https://doi.org/10.1038/227680a0.
- Vandergeeten, C., Fromentin, R., Merlini, E., Lawani, M. B., DaFonseca, S., Bakeman, W., McNulty, A., Ramgopal, M., Michael, N., Kim, J. H., Ananworanich, J., and Chomont, N. (2014) Cross-clade ultrasensitive PCRbased assays to measure HIV persistence in large-cohort studies, J. Virol., 88, 12385-12396, https://doi.org/10.1128/JVI.00609-14.
- Anisenko, A. N., Knyazhanskaya, E. S., Isaguliants, M. G., and Gottikh, M. B. (2018) A qPCR assay for measuring the post-integrational DNA repair in HIV-1 replication, J. Virol. Methods, 262, 12-19, https://doi.org/10.1016/j.jviromet.2018.09.004.
- Bukau, B., and Horwich, A. L. (1998) The Hsp70 and Hsp60 chaperone machines, Cell, 92, 351-366, https://doi.org/10.1016/S0092-8674(00)80928-9.
- Martin, J., Horwich, A. L., and Hartl, F. U. (1992) Prevention of protein denaturation under heat stress by the chaperonin Hsp60, Science, 258, 995-998, https://doi.org/10.1126/science.1359644.
- Soltys, B. J., and Gupta, R. S. (1996) Immunoelectron microscopic localization of the 60-kDa heat shock chaperonin protein (Hsp60) in mammalian cells, Exp. Cell Res., 222, 16-27, https://doi.org/10.1006/excr.1996.0003.
- Itoh, H., Kobayashi, R., Wakui, H., Komatsuda, A., Ohtani, H., Miura, A. B., Otaka, M., Masamune, O., Andoh, H., Koyama, K., Sato, Y., and Tashima, Y. (1995) Mammalian 60-kDa stress protein (chaperonin homolog): identification, biochemical properties, and localization, J. Biol. Chem., 270, 13429-13435, https://doi.org/10.1074/jbc.270.22.13429.
- Wu, T., Jia, L., Lei, S., Jiang, H., Liu, J., Li, N., Langford, P. R., Liu, H., and Lei, L. (2022) Host HSPD1 translocation from mitochondria to the cytoplasm induced by Streptococcus suis serovar 2 enolase mediates apoptosis and loss of blood-brain barrier integrity, Cells, 11, 2071, https://doi.org/10.3390/cells11132071.
- Turner, M. A., Simpson, A., McInnes, R. R., and Howell, P. L. (1998) Structure determination of selenomethionyl S-adenosylhomocysteine hydrolase using data at a single wavelength, Nat. Struct. Biol., 5, 369-376, https://doi.org/10.1038/nsb0598-369.
- Vizan, P., Di Croce, L., and Aranda, S. (2021) Functional and pathological roles of AHCY, Front. Cell Dev. Biol., 9, 654344, https://doi.org/10.3389/fcell.2021.654344.
- Mushegian, A. R., Garey, J. R., Martin, J., and Liu, L. X. (1998) Large-scale taxonomic profiling of eukaryotic model organisms: a comparison of orthologous proteins encoded by the human, fly, nematode, and yeast genomes, Genome Res., 8, 590-598, https://doi.org/10.1101/gr.8.6.590.
- Dickinson, M. E., Flenniken, A. M., Ji, X., Teboul, L., Wong, M. D., White, J. K., Meehan, T. F., Weninger, W. J., Westerberg, H., Adissu, H., Baker, C. N., Bower, L., Brown, J. M., Caddle, L. B., Chiani, F., Clary, D., Cleak, J., Daly, M. J., Denegre, J. M., Doe, B., Dolan, M. E., Edie, S. M., Fuchs, H., Gailus-Durner, V., Galli, A., Gambadoro, A., Gallegos, J., Guo, S., Horner, N. R., Hsu, C. W., Johnson, S. J., Kalaga, S., Keith, L. C., Lanoue, L., Lawson, T. N., Lek, M., Mark, M., Marschall, S., Mason, J., McElwee, M. L., Newbigging, S., Nutter, L. M., Peterson, K. A., Ramirez-Solis, R., Rowland, D. J., Ryder, E., Samocha, K. E., Seavitt, J. R., Selloum, M., Szoke-Kovacs, Z., Tamura, M., Trainor, A. G., Tudose, I., Wakana, S., Warren, J., Wendling, O., West, D. B., Wong, L., Yoshiki, A., International Mouse Phenotyping Consortium, Wurst, W., MacArthur, D. G., TocchiniValentini, G. P., Gao, X., Flicek, P., Bradley, A., Skarnes, W. C., Justice, M. J., Parkinson, H. E., Moore, M., Wells, S., Braun, R. E., Svenson, K. L., De Angelis, M. H., Herault, Y., Mohun, T., Mallon, A. M., Henkelman, R. M., Brown, S. D., Adams, D. J., Lloyd, C., McKerlie, C., Beaudet, A. L., Bućan, M., and Murray, S. A. (2016) High-throughput discovery of novel developmental phenotypes, Nature, 537, 508-514, https://doi.org/10.1038/nature19356.
- Miller, M. W., Duhl, D. M., Winkes, B. M., Arredondo-Vega, F., Saxon, P. J., Wolff, G. L., Epstein, C. J., Hershfield, M. S., and Barsh, G. S. (1994) The mouse lethal nonagouti (a(x)) mutation deletes the S-adenosylhomocysteine hydrolase (Ahcy) gene, EMBO J., 13, 1806-1816, https://doi.org/10.1002/j.1460-2075.1994.tb06449.x.
- Vugrek, O., Beluzic, R., Nakic, N., and Mudd, S. H. (2009) S-adenosylhomocysteine hydrolase (AHCY) deficiency: two novel mutations with lethal outcome, Hum. Mutat., 30, E555-E565, https://doi.org/10.1002/humu.20985.
- Radomski, N., Kaufmann, C., and Dreyer, C. (1999) Nuclear accumulation of S-adenosylhomocysteine hydrolase in transcriptionally active cells during development of Xenopus laevis, Mol. Biol. Cell, 10, 4283-4298, https://doi.org/10.1091/mbc.10.12.4283.
- Bader, J. P., Brown, N. R., Chiang, P. K., and Cantoni, G. L. (1978) 3-Deazaadenosine, an inhibitor of adenosylhomocysteine hydrolase, inhibits reproduction of Rous sarcoma virus and transformation of chick embryo cells, Virology, 89, 494-505, https://doi.org/10.1016/0042-6822(78)90193-4.
- Snoeck, R., Andrei, G., Neyts, J., Schols, D., Cools, M., Balzarini, J., and De Clercq, E. (1993) Inhibitory activity of S-adenosylhomocysteine hydrolase inhibitors against human cytomegalovirus replication, Antiviral Res., 21, 197-216, https://doi.org/10.1016/0166-3542(93)90007-6.
- De Clercq, E. (2005) John Montgomery’s legacy: carbocyclic adenosine analogues as SAH hydrolase inhibitors with broad-spectrum antiviral activity, Nucleosides Nucleotides Nucleic Acids, 24, 1395-1415, https://doi.org/10.1080/15257770500265638.
- Daelemans, D., Este, J. A., Witvrouw, M., Pannecouque, C., Jonckheere, H., Aquaro, S., Perno, C. F., De Clercq, E., and Vandamme, A. M. (1997) S-adenosylhomocysteine hydrolase inhibitors interfere with the replication of human immunodeficiency virus type 1 through inhibition of the LTR transactivation, Mol. Pharmacol., 52, 1157-1163, https://doi.org/10.1124/mol.52.6.1157.
- Mayers, D. L., Mikovits, J. A., Joshi, B., Hewlett, I. K., Estrada, J. S., Wolfe, A. D., Garcia, G. E., Doctor, B. P., Burke, D. S., and Gordon, R. K. (1995) Anti-human immunodeficiency virus 1 (HIV-1) activities of 3-deazaadenosine analogs: increased potency against 3′-azido-3′-deoxythymidine-resistant HIV-1 strains, Proc. Natl. Acad. Sci. USA, 92, 215-219, https://doi.org/10.1073/pnas.92.1.215.
- Wu, X., Liu, H., Xiao, H., Conway, J. A., Hehl, E., Kalpana, G. V., Prasad, V., and Kappes, J. C. (1999) Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through specific interactions with the nucleoprotein reverse transcription complex, J. Virol., 73, 2126-2135, https://doi.org/10.1128/JVI.73.3.2126-2135.1999.
- Engelman, A., Englund, G., Orenstein, J. M., Martin, M. A., and Craigie, R. (1995) Multiple effects of mutations in human immunodeficiency virus type 1 integrase on viral replication, J. Virol., 69, 2729-2736, https://doi.org/10.1128/JVI.69.5.2729-2736.1995.
- Leavitt, A. D., Robles, G., Alesandro, N., and Varmus, H. E. (1996) Human immunodeficiency virus type 1 integrase mutants retain in vitro integrase activity yet fail to integrate viral DNA efficiently during infection, J. Virol., 70, 721-728, https://doi.org/10.1128/JVI.70.2.721-728.1996.
Supplementary files


