Некоторые характерные особенности широтных вариаций поглощения метана и аммиака на Юпитере
- 作者: Vdovichenko V.D.1, Karimov A.M.1, Lysenko P.G.1, Tejfel V.G.1, Filippov V.A.1, Kharitonova G.A.1
-
隶属关系:
- Astrophysical Institute named after V.G. Fesenkov
- 期: 卷 59, 编号 4 (2025): VOL 59, NO4 (2025)
- 页面: 315-326
- 栏目: Articles
- URL: https://bakhtiniada.ru/0320-930X/article/view/313947
- DOI: https://doi.org/10.31857/S0320930X25040027
- EDN: https://elibrary.ru/lwfutx
- ID: 313947
如何引用文章
详细
关键词
作者简介
V. Vdovichenko
Astrophysical Institute named after V.G. Fesenkov
Email: vdv1942@mail.ru
Almaty, Kazakhstan
A. Karimov
Astrophysical Institute named after V.G. FesenkovAlmaty, Kazakhstan
P. Lysenko
Astrophysical Institute named after V.G. FesenkovAlmaty, Kazakhstan
V. Tejfel
Astrophysical Institute named after V.G. Fesenkov
Email: tejf@mail.ru
Almaty, Kazakhstan
V. Filippov
Astrophysical Institute named after V.G. FesenkovAlmaty, Kazakhstan
G. Kharitonova
Astrophysical Institute named after V.G. FesenkovAlmaty, Kazakhstan
参考
- Вдовиченко В.Д., Кириенко Г.А. Исследование асимметрии в ходе поглощения аммиака в северном и южном полушариях Юпитера в 2004–2016 годах // Изв. НАН РК. 2017. № 4. С. 170–178.
- Вдовиченко В.Д., Тейфель В.Г. Исследования планет в Казахстане (1952–2018): монография. Алматы, 2018. 355 с.
- Вдовиченко В.Д., Каримов А.М., Кириенко Г.А., Лысенко П.Г., Тейфель В.Г., Филиппов В.А., Харитонова Г.А., Хоженец А.П. Молекулярные полосы поглощения в исследовании тропосферы Юпитера // Изв. НАН РК. Cер. физ.-мат. 2020. V. 3. С. 26–33. https://doi.org/10.32014/2020.2518-1726.33
- Тейфель В.Г., Харитонова Г.А., Каримов А.М. Особенности широтного хода аммиачного поглощения в полосе NH3 7870 А на Юпитере // Изв. НАН РК. Сер. физ.-мат. 2006. № 4. С. 57–61.
- Banfield D., Gierasch P.J., Bell M., Ustinov E., Ingersoll A.P., Vasavada A.R., West R.A., Belton M.J.S. Jupiter's cloud structure from Galileo imaging data // Icarus. 1998. V. 135. P. 230–250. https://doi.org/10.1006/icar.1998.5985
- Bardet D., Donnelly P.T., Fletcher L.N., Antuñano A., Roman M.T., Sinclair J.A., Orton G.S., Tao Chihiro, Rogers J.H., Melin H., Harkett J. Investigating thermal contrasts between Jupiter's belts, zones, and polar vortices with VLT/VISIR // J. Geophys. Res.: Planets. 2024. V. 129. ID e2023JE007902. https://doi.org/10.1029/2023JE007902
- de Pater I., Deboer D., Marley M., Freedman R., Young R. Retrieval of water in Jupiter’s deep atmosphere using microwave spectra of its brightness temperature // Icarus. 2005. V. 173. P. 425–438. https://doi.org/10.1016/j.icarus.2004.06.019
- de Pater I., Sault R.J., Butler B., DeBoer D., Wong M.H. Peering through Jupiter’s clouds with radio spectral imaging. Research Reports. Gas Giant Planets // Science. 2016. V. 352. Iss. 6290. P. 1198–1201. https://doi.org/10.1126/science.aaf2210
- Fletcher L.N., Orton G.S., Yanamandra-Fisher P., Fisher B.M., Parrish P.D., Irwin P.G.J. Retrievals of atmospheric variables on the gas giants from ground-based mid-infrared imaging // Icarus. 2009. V. 200. P. 154–175. https://doi.org/10.1016/j.icarus.2008.11.019
- Fletcher L.N., Orton G.S., Mousis O., Yanamandra-Fisher P., Parrish P.D., Irwin P.G.J., Fisher B.M., Vanzi L., Fujiyoshi T., Fuse T., Simon-Miller A.A., and 3 co-authors. Thermal structure and composition of Jupiter’s Great Red Spot from high-resolution thermal imaging // Icarus. 2010. V. 208. P. 306–328. https://doi.org/10.1016/j.icarus.2010.01.005
- Fletcher L.N., Orton G.S., de Pater I., Edwards M., Yanamandra-Fisher P., Hammel H.B., Lisse C.M. The aftermath of the July 2009 impact on Jupiter: Ammonia, temperatures and particulates from Gemini thermal infrared spectroscopy // Icarus. 2011. V. 211. P. 568–586. https://doi.org/10.1016/j.icarus.2010.09.012
- Gibson J., Welch W.J., de Pater I. Accurate Jovian radio flux density measurements show ammonia to be subsaturated in the upper troposphere // Icarus. 2005. V. 173. P. 439–446. https://doi.org/10.1016/j.icarus.2004.06.020
- Hanel R.A., Conrath B.J., Jennings D.E., Samuelson R.E. Exploration of the Solar System by Infrared Remote Sensing. 2nd ed. Cambridge Univ. Press, 2003. 534 p. ISBN: 9780521818971.
- Hill S.M., Irwin P.G.J., Alexander C., Rogers J.H. Spatial variations of Jovian tropospheric ammonia via ground-based imaging // Earth and Space Sci. 2024. V. 11. ID e2024EA003562. https://doi.org/10.1029/2024EA003562
- Kofman V., Mockel C., Orton G., Venditti F., Migliorini A., Faggi S., Cordiner M., Liuzzi G., Lippi M., Knutsen E.W., and 6 co-authors. Synergies between ground-based and space-based observations in the solar system and beyond // arXiv preprint arXiv: 2008. 01080. 2020. https://doi.org/10.48550/arXiv.2008.01080
- Morales-Juberı́as R., Sánchez-Lavega A., Do`wling T.E. EPIC simulations of the merger of Jupiter’s White Ovals BE and FA: Altitude-dependent behavior // Icarus. 2003. V. 166. P. 63–74. https://doi.org/10.1016/j.icarus.2003.08.009
- Moreno F., Molina A., Lara L.M. Charge-coupled device spectral images of spatially resolved regions of Jupiter in the 6190- and 8900-Å methane and 6450-Å ammonia bands during the 1989 opposition // J. Geophys. Res.: Space Physics. 1991. V. 96. № A8. P. 14119–14127. https://doi.org/10.1029/91JA01073
- Orton G.S., Friedson A.J., Yanamandra-Fisher P.A., Caldwell J., Hammel H., Baines K.H., Bergstralh J.T, Martin T.Z., West R.A., Veeder G.J., and 10 co-authors. Thermal maps of Jupiter: Spatial organization and time dependence of tropospheric temperatures, 1980–1993 // Science. 1994. V. 265. P. 625–631. https://doi.org/10.1126/science.252.5005.537
- Sault R.J., Engel C., de Pater I. Longitude-resolved imaging of Jupiter at λ = 2 cm // Icarus. 2004. V. 168. P. 336–343. https://doi.org/10.1016/j.icarus.2003.11.014
- Sayanagi K.M., Becker T., Brooks S., Brueshaber S., Dahl E., de Pater I., Ebert R., El Moutamid M., Fletcher L., Jessup K.L., and 13 co-authors. Priority Questions for Jupiter System Science in the 2020s and Opportunities for Europa Clipper // arXiv preprint arXiv: 2007. 08609. 2020. https://doi.org/10.48550/arXiv.2007.08609
- Tejfel V.G., Karimov A.M. A behaviour of the methane-ammonia absorption bands on Jupiter in 2004 // Bull. Am. Astron. Soc. 2004. V. 36. № 4. P. 1106.
- Tejfel V.G., Karimov A.M., Vdovichenko V.D. Strange latitudinal variations of the ammonia absorption on Jupiter // Bull. Am. Astron. Soc. 2005а. V. 37. № 3. P. 682.
- Tejfel V.G., Vdovichenko V.D., Kirienko G.A., Kharitonova G.A., Sinjaeva N.V., Karimov A.A. Spatially resolved variation in the methane and ammonia absorption in the atmosphere of Jupiter // Astron. And Astrophys. Transact. 2005b. V. 24. № 4. P. 359–363. https://doi.org/10.1080/10556790500487239
- Tejfel V.G., Vdovichenko. V.D., Lysenko P.G., Karimov A.M., Kiriyenko G.А., Bondarenko N.N., Filippov V.A., Kharitonova G.A., Khozhenets A.P. Ammonia in Jupiter’s atmosphere: Spatial and temporal variations of the NH3 absorption bands at 645 and 787 nm // Sol. Syst. Res. 2018. V. 52. № 6. P. 480–494. https://doi.org/10.1134/S0038094618060072
- Vdovichenko V.D. Methodological aspects of the study of ammonia-methane absorption variations in the atmosphere of Jupiter // Fifteenth Moscow Solar System Symp. 2024. P. 138–141.
- West R.A., Strobel D.F., Tomasko M.G. Clouds, aerosols, and photochemistry in the Jovian atmosphere // Icarus. 1986. V. 65. P. 161–217. https://doi.org/10.1016/0019-1035(86)90135-1
- Wong M.H., Simon A.A., Tollefson J.W., de Pater I., Barnett M.N., Hsu A.I., Stephens A.W., Orton G.S., Fleming S.W., Goullaud Ch., and 6 co-authors. High-resolution UV/optical/IR imaging of Jupiter in 2016–2019 // Astrophys. J. Suppl. Ser. 2020. V. 247. P. 58. https://doi.org/10.3847/1538-4365/ab775f
补充文件
