Моделирование коэффициента усиления вертикальной антенны в мелководном волноводе со взволнованной поверхностью

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Аналитически и численно исследуется влияние развитого ветрового волнения на коэффициент усиления вертикальной антенны в мелководных океанических волноводах. Предложен алгоритм расчета модельной корреляционной матрицы сигнала на апертуре вертикальной антенной решетки, учитывающий интерференционную структуру акустического поля в звуковом канале. Коэффициент усиления антенны анализируется для трех методов пространственной обработки: стандартного метода ФАР (фазированной антенной решетки), метода оптимальной линейной обработки и метода оптимальной квадратичной обработки. Приведены результаты численного моделирования для гидрологических условий Баренцева моря в зимний период. Основное внимание уделяется зависимости от скорости ветра и характеристик донного грунта значений коэффициента усиления антенной решетки, “сглаженных” на масштабе интерференционной структуры акустического поля в волноводе. Подробно анализируется влияние межмодовых корреляций на результаты моделирования коэффициента усиления при различных способах обработки сигнала. Показано, что игнорирование межмодовых корреляций в случае вертикальной антенны приводит к принципиально ошибочным результатам при оптимальных методах обработки.

Полный текст

Доступ закрыт

Об авторах

М. А. Раевский

Институт прикладной физики РАН

Автор, ответственный за переписку.
Email: bvg@appl.sci-nnov.ru
Россия, Нижний Новгород

В. Г. Бурдуковская

Институт прикладной физики РАН

Email: bvg@appl.sci-nnov.ru
Россия, Нижний Новгород

Список литературы

  1. Кацнельсон Б.Г., Петников В.Г. Акустика мелкого моря. М.: Наука, 1997. 193 с.
  2. Buckingham M.J. Array gain of a broadside vertical line array in shallow water // J. Acoust. Soc. Am. 1979. V. 65. № 1. P. 148–161.
  3. Clay C.S. Comments on “Array gain of a broad side vertical array in shallow water” // J. Acoust. Soc. Am. 1979. V. 66. № 5. P. 1548–1551.
  4. Hamson R.M. The theoretical gain limitations of a passive vertical line array in shallow water // J. Acoust. Soc. Am. 1980. V. 68. № 1. P. 156–164.
  5. Елисеевнин В.А. О работе горизонтальной линейной антенны в мелком море // Акуст. журн. 1983. Т. 29. № 1. С. 44–49.
  6. Елисеевнин В.А. Диаграмма направленности компенсированной излучающей горизонтальной линейной антенны в волноводе // Акуст. журн. 1989. Т. 35. № 3. С. 468–472.
  7. Елисеевнин В.А. Усредненный отклик горизонтальной линейной антенны в мелком море // Акуст. журн. 2004. Т. 50. № 2. С. 193–197.
  8. Завольский Н.А., Малеханов А.И., Раевский М.А. Сравнительный анализ методов пространственной обработки сигналов, принимаемых горизонтальной антенной решеткой в канале мелкого моря со взволнованной поверхностью // Акуст. журн. 2019. T. 65. № 5. С. 608–618.
  9. Бурдуковская В.Г., Малеханов А.И., Раевский М.А. Влияние анизотропного ветрового волнения на эффективность пространственной обработки акустических сигналов в мелком море // Акуст. журн. 2021. T. 67. № 6. С. 617–625.
  10. Раевский М.А., Бурдуковская В.Г. Пространственная обработка акустических сигналов в океанических волноводах на фоне шумов ветрового происхождения // Акуст. журн. 2023. Т. 69. № 1. 73–83.
  11. Раевский М.А., Бурдуковская В.Г. Влияние межмодовых корреляций на эффективность пространственной обработки акустических сигналов в океаническом волноводе со взволнованной поверхностью // Акуст. журн. 2022. T. 68. № 6. С. 625–637.
  12. Завольский Н.А., Малеханов А.И., Раевский М.А., Смирнов А.В. Влияние ветрового волнения на характеристики горизонтальной антенны в условиях мелкого моря // Акуст. журн. 2017. T. 63. № 5. С. 501–512.
  13. Раевский М.А., Бурдуковская В.Г. Влияние случайных внутренних волн на характеристики горизонтальной антенны в мелком море // Акуст. журн. 2023. Т. 69. № 5. С. 584–594.
  14. Labutina M.S., Malekhanov A.I. and Smirnov A.V. Estimation of efficiency of vertical antenna arrays in underwater sound channels // Phys. Wave Phenom. 2016. V. 24. № 2. P. 161–167.
  15. Smirnov A.V., Malekhanov A.I. and Labutina M.S. Vertical array gain in a randomly inhomogeneous underwater sound channels: Effect of the array arrangement // POMA. 2021. V. 44.
  16. Горская Н.С., Раевский М.А. О многократном рассеянии низкочастотных акустических волн на поверхностном волнении // Акуст. журн. 1986. Т. 32. № 2. С. 165–171.
  17. Нечаев А.Г. Затухание интерференционной структуры акустического поля в океане со случайными неоднородностями // Акуст. журн. 1987. Т. 33. № 3. С. 535–538.
  18. Давидан И.Н., Лопатухин Л.И., Рожков В.А. Ветровое волнение в Мировом океане. Л.: Гидрометеоиздат, 1985. 256 с.
  19. Раевский М.А., Бурдуковская В.Г. Многократное рассеяние океанического шума на ветровом волнении в мелком море // Акуст. журн. 2021. T. 67. № 5. С. 514–520.
  20. Kuperman W.A., Ingenito F. Spatial correlation of surface generated noise in a stratified ocean // J. Acoust. Soc. Am. 1980. V. 67. P. 1988–1996.
  21. Монзиго Р.А., Миллер Т.У. Адаптивные антенные решетки: Введение в теорию / Пер. с англ. М.: Радио и связь, 1986. 448 с.
  22. Baker C.R. Optimum quadratic detection of a random vector in Gaussian noise // IEEE Trans. Commun. VOL.COM-14. 1966. № 6. P. 802–805.
  23. Morgan D.R., Smith T.M. Coherence effects on the detection performance of quadratic array processors, with applications to large-array matched-field // J. Acoust. Soc. Am. 1990. V. 87. № 2. P. 737–747.
  24. Малеханов А.И., Таланов В.И. Об оптимальном приеме сигналов в многомодовых волноводах // Акуст. журн. 1990. Т. 36. № 5. С. 891–897.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».