Излучательная способность элементов подгруппы скандия
- Авторы: Косенков Д.В.1, Сагадеев В.В.1
-
Учреждения:
- Казанский национальный исследовательский технологический университет
- Выпуск: № 1 (2025)
- Страницы: 35-45
- Раздел: Статьи
- URL: https://bakhtiniada.ru/0235-0106/article/view/278826
- DOI: https://doi.org/10.31857/S0235010625010043
- ID: 278826
Цитировать
Аннотация
Представлены результаты экспериментального исследования нормальной интегральной излучательной способности металлов подгруппы скандия: скандий, иттрий и лантан в широком интервале температур твердое тело–жидкость, включая фазовый переход. Исследование обусловлено отсутствием данных по нормальной интегральной излучательной способности металлов в периодических и справочных изданиях. Интерес к исследуемым металлам также связан с уникальными физико-химическими свойствами, которые делают их перспективными для применения в высокотемпературных системах. Авторы статьи интерпретируют представленные данные как полученные впервые, и они носят предварительный характер, требующий уточнения. Метод измерения – радиационный, способ нагрева образцов – резистивный. Погрешность эксперимента ± 3–5%. Измерения твердой фазы металлов проводились в вакууме, жидкая фаза исследовалась в атмосфере специально подготовленного газа – аргона. Представлены графические иллюстрации и численные значения результатов по каждому из исследованных металлов. Полученные комплексные данные по нормальной интегральной излучательной способности в пределах каждой из фаз состояния металлов монотонно возрастают. Такое поведение нормальной интегральной излучательной способности связывается со структурными изменениями в кристаллических решетках вследствие роста температуры. В области фазового перехода твердое тело–жидкость обнаружен скачок нормальной интегральной излучательной способности по каждому из исследованных металлов. В этом случае скачок связан с резким ростом свободных электронов при перестройке структуры металла вследствие плавления, а величина скачка в процентном отношении к твердой фазе у каждого металла индивидуальна. Все результаты исследования проанализированы и обсуждены. Проведено численное моделирование по классической электромагнитной теории с использованием приближения Фута, результаты которого сопоставлены с экспериментальными значениями. Сделан вывод о том, что теоретический расчет излучательной способности качественно, но не количественно, позволяет описать поведение излучательной способности металлов при условии, что известны значения удельного электрического сопротивления металлов в заданном температурном диапазоне.
Ключевые слова
Полный текст

Об авторах
Д. В. Косенков
Казанский национальный исследовательский технологический университет
Автор, ответственный за переписку.
Email: dmi-kosenkov@yandex.ru
Россия, Казань
В. В. Сагадеев
Казанский национальный исследовательский технологический университет
Email: dmi-kosenkov@yandex.ru
Россия, Казань
Список литературы
- Siegel R., Howell J.R. Thermal Radiation Heat Transfer. NY.: Taylor & Francis. 2010.
- Блох А.Г., Журавлев Ю.А., Рыжков Л.Н. Теплообмен излучением. М.: Энергоатомиздат. 1991.
- Michael F. Modest. Radiative heat transfer. NY.: McGraw-Hill. 1993.
- Anhalt K., Mariacarla A., Jochen M. and etc. Measuring spectral emissivity up to 4000 K // High temperatures-high pressures. 2024. 53. № 3. P. 255–270. https://doi.org/10.32908/hthp.v53.1619
- Eber A., Pichler P., Pottlacher G. Re-investigation of the normal spectral emissivity at 684,5 nm of solid and liquid molybdenum // Int. J. Thermophys. 2021. 42. № 17. P. 7.
- Fukuyama H., Higashi H., Yamano H. Normal spectral emissivity, specific heat capacity, and thermal conductivity of type 316 austenitic stainless steel containing up to 10 mass % B4C in a liquid state // Journal of Nuclear Materials. 2022. 568. № 5. Р. 12.
- Adachi M., Yamagata Y., Watanabe M. and etc. Composition dependence of normal spectral emissivity of liquid Ni – Al alloys // ISIJ International. 2021. 61. № 3. P. 684–689.
- Ishikawa T., Koyama C., Nakata Y. and etc. Spectral emissivity, hemispherical total emissivity and constant pressure heat capacity of liquid vanadium measured by an electrostatic levitator // J. Chem. Thermodynamics. 2021. 163. 106598. P. 7.
- Ishikawa T., Koyama C., Nakata Y. and etc. Spectral emissivity and constant pressure heat capacity of liquid titanium measured by an electrostatic levitator // J. Chem. Thermodynamics. 2019. 131. P. 557–562.
- Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах. М.: Металлургия, 1989.
- Регель А.Р., Глазов В.М. Периодический закон и физические свойства электронных расплавов. М.: Наука, 1978.
- Зеликман А.Н., Коршунов Б.Г. Металлургия редких металлов. М.: Металлургия, 1991.
- Михайличенко А.И., Михлин Е.Б., Патрикеев Ю.Б. Редкоземельные металлы. М.: Металлургия, 1987.
- Yellapu V. Murty, Mary Anne Alvin, Jack P. Lifton. Rare earth metals and minerals industries: status and prospects. Cham: Springer, 2024.
- Косенков Д.В., Сагадеев В.В., Аляев В.А. Степень черноты ряда металлов VIII группы периодической системы // Теплофизика и аэромеханика. 2021. 28. № 6. С. 951–956.
- Косенков Д.В., Сагадеев В.В. Исследование излучательной способности циркония и гафния в широком диапазоне температур // Журнал технической физики. 2024. 24. № 8. С. 1356–1361.
- Косенков Д.В., Сагадеев В.В. Зависимость нормальной интегральной излучательной способности группы щелочных металлов от температуры // Теплофизика и аэромеханика. 2024. 31. № 4. С. 817–825.
- Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. Л.: Энергоатомиздат. 1991.
- Физическое металловедение. Том 1: Атомное строение металлов и сплавов / Под ред. Кана Р.У., Хаазена П. М.: Металлургия, 1987.
- Mardon P.G., Nichols J.L., Pearce J.H. and etc. Some Properties of Scandium Metal // Nature. 1961. 189. P. 566 – 568.
- Kammler D.R., Rodriguez M.A., Tissot R.G. and etc. In situ time of flight neutron diffraction study of high-temperature α-to-β phase transition in elemental scandium // Metallurgical and materials transactions A. 2008. 39. № 12. P. 2815 – 2819.
- Зиновьев В.Е. Кинетические свойства металлов при высоких температурах. М.: Металлургия. 1984.
- Излучательные свойства твердых материалов / Под ред. А.Е. Шейндлина. М.: Энергия. 1974.
- Takamichi I., Roderick I.L. Guthrie. The thermophysical properties of metallic liquids. Vol. 2: Predictive models. Oxford: Oxford University Press. 2015.
- Савицкий Е.М., Терехова В.Ф., Наумкин О.П. Физико-химические свойства редкоземельных металлов, скандия и иттрия // Успехи физических наук. 1963. 79. № 2. С. 263–293.
- Ishikawa T., Watanabe Y., Koyama C. and etc. Constant pressure heat capacity of molten yttrium measured by an electrostatic levitator // In. Journal of Microgravity Science and Application. 2023. 40. № 2. P.11.
- Ивлиев А.Д. Электрическое сопротивление редкоземельных металлов и их сплавов при высоких температурах: роль магнитного рассеяния // Физика твердого тела. 2020. 62. № 10. С. 1587–1593.
- Григорович В.К. Металлическая связь и структура металлов. М.: Наука, 1988.
- Spedding F.H., Daane A.H., Herrmann K.W Electrical resistivities and phase transformations of lanthanum, cerium, praseodymium and neodymium // JOM. 1957. 9. P. 895 – 897.
Дополнительные файлы
