Solubility of CeO2 and Nd2O3 in LiCl-Li2O melts

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Modern development of the nuclear industry requires a solution for the problems of spent nuclear fuel (SNF) processing, increasing the degree of nuclear fuel burn up and separating of fission products (FP) from fissile materials (FM). A promising method for solving these problems is pyrochemical reprocessing of SNF, one of the stages of which is oxide deposition. For safety reasons, the study is conducted using FM and FM simulators, including cerium and neodymium. In this work, the dissolution of neodymium (III) and cerium (IV) oxides in lithium chloride-based melts were studied. In the LiCl-Li2O melt, with a Li2O content not more than 4 mol.%, the solubility of cerium oxide remains below the detection limit, and then it significantly increases reaching 8.4∙10-3and 2.4∙10-2mol.% at 5 and 9 mol.% Li2O respectively. In case of neodymium oxide its solubility in the LiCl-Li2O melt increases linearly from 1.5∙10-3mol.% at 2 mol.% Li2O to 6.4∙10-3mol.% at 9 mol.% Li2O. The time to reach the saturation state during the dissolution of neodymium oxide is several times less than the time to reach the saturation state during the dissolution of neodymium oxide (25 hours for Nd2O3versus 145 hours for CeO2). To analyze the mechanisms of cerium and neodymium oxides dissolution, the phase composition of the ceramic tablets of these oxides after the experiment, as well as optical absorption spectra of the obtained melts were studied. Taking into account these data the possible mechanisms of interaction of cerium and neodymium oxides with LiCl-Li2O melts (0–9 mol.%) were proposed. The dissolution of cerium oxide occurs in a two-stage process with the slow formation of intermediate insoluble cerium compounds followed by their transition to soluble forms LiCeO2(for Ce3+) and Li2CeO3(for Ce4+), whichcauses the slow kinetics and nonlinear dependence on the Li2O content. Neodymium oxide interacts with lithium oxide in the melt, forming a soluble lithium neodymate compound LiNdO2.

Авторлар туралы

S. Zhuk

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Email: zhuk@ihte.ru
Yekaterinburg

N. Panyak

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Email: zhuk@ihte.ru
Yekaterinburg

S. Chernyshev

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Email: zhuk@ihte.ru
Yekaterinburg

M. Vlasov

Institute of High-Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: zhuk@ihte.ru
Yekaterinburg

Әдебиет тізімі

  1. Adamov E.O., Ivanov V.B., Dzhalavyan A.V., Lopatkin A.V. Konceptual`ny`e polozheniya strategii razvitiya yadernoj e`nergetiki Rossii v perspektive do 2100 g // Atomnaya e`nergiya. 2012. T.112. № 6. S. 319–330. [In Russian]
  2. Shadrin A.Yu., Ivanov V.B., Skupov M.V., Troyanov V.M., Zherebczov A.A. Sravnenie nekotory`x variantov texnologij zamknutogo yadernogo toplivnogo cikla // Atomnaya e`nergiya. 2016. T. 121. V. 2. S. 90–97. [In Russian]
  3. Koyama T., Sakamura Y., Iizuka M., Kato T., Murakami T., Glatz J.-P. Development of Pyro-processing Fuel Cycle Technology for Closing Actinide Cycle // Procedia Chemistry. 2012. V.7. Pp. 772–778.
  4. Seregin M.B., Parshin A.P., Kuznetsov A.Yu., Ponomarev L.I. Solubility of UF4, ThF4, and CeF3in a LiF-NaF-KF melt // Radiochemistry. 2011.53(5). Pp. 491–493.
  5. Ponomarev L.I., M.B. Seregin, A.A. Mikhalichenko, A.P. Parshin Validation of actinide fluoride simulators for studying solubility in fuel salt of molten-salt reactors // At. Energy. 2012. 112. Pp. 417–422.
  6. Gourishankar K.V., Johnson G.K., Johnson I. Thermodynamics of Mixed Oxide Compounds, Li2O–Ln2O3(Ln = Nd or Ce) // Metallurgical and Materials Transactions B. 1997. V.28. Pp. 1103–1110.
  7. Kato T., Sakamura Y., Iwai T., Arai Y. Solubility of Pu and rare-earths in LiCl–Li2O melt // Radiochim. Acta. 2009. V.97. Pp. 183–186.
  8. Korzun I.V., Nikolaeva E.V., Zakiryanova I.D. Thermal analysis of the oxide–chloride systems GdCl3-Gd2O3and GdCl3-KCl-Gd2O3 // Journal of Thermal Analysis and Calorimetry. 2021. 144. Pp. 1343–1349.
  9. Cui J., Hope G.A. Raman and Fluorescence Spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7 // Journal of Spectroscopy. 2015. P. 8.
  10. Patent RF na izobretenie № 2836124. Ustanovka dlya issledovaniya opticheskix xarakteristik rasplavlenny`x sred / Zajkov Yu.P.,Vlasov M.I., Cherny`shev S.V.; opubl.: 11.03.2025. Byul. 8. [In Russian]
  11. Kovrov V.A., Mullabaev A.R., Shishkin V.Y., Zaikov Y.P. Solubility of Li2O in an LiCl-KCl melt // Russian metallurgy (Metally). 2018. V.2018. № 2. С. 169–173.
  12. Sakamura Y. Solubility of Li2O in Molten LiCl-MClx(M = Na, K, Cs, Ca, Sr, or Ba) Binary Systems // Journal of The Electrochemical Society. 2010.157. 9. Pp. 135–139.
  13. Hayashi H., Minato K. Stability of lanthanide oxides in LiCl–KCl eutectic melt // Journal of Physics and Chemistry of Solids. 2005. 66. Pp. 422–426.
  14. A. Davies et al. Thermodynamics and phase stability of Li8XO6octalithium ceramic breeder materials (X = Pb, Ce, Ge, Zr, Sn) // J. Phys.: Condens. Matter. 2022.34. 355701. P. 14.
  15. Johnson K.E., Sandoe J.N. Solvent LiCI-KCl in the nephelauxetic series for trivalent rare earths // Canadian journal of chemistry. 1968. 46. Pp. 3457–3462.
  16. Khokhryakov A.A., Khokhlova A.M. Electronic Absorption Spectra of the Ce3+Ions in Halide Melts // Radiochemistry. 2003.45. 6. Pp. 559–561.
  17. Potapov A.M., Salyulev A.B. Electronic absorption spectra of CeCl3in molten alkali chlorides // Progress in Molten Salt Chemistry: Proceedings from the EUCHEM 2000 Conference on Molten Salts. 2000. 1. Pp. 429–433.
  18. Kim B.Y., Yun J.-I. Optical absorption and fluorescence properties of trivalent lanthanide chlorides in high temperature molten LiCl-KCl eutectic // Journal of Luminescence. 2016. 178. Pp. 331–339.
  19. Choi S., Bae S.-E., Park T.-H. Electrochemical and Spectroscopic Monitoring of Interactions of Oxide Ion with U (III) and Ln (III) (Ln = Nd, Ce, and La) in LiCl-KCl Melts // Journal of The Electrochemical Society. 2017.164. 8. H. 5068–5073.
  20. Greenhaus H.L., Feibush A.M., Gordon L. Ultraviolet Spectrophotometric Determination of Cerium (III) // Analytical Chemistry. 1957.29. 10. Pp. 1531–1534.
  21. Medalia A.I., Byrne B.J. Spectrophotometric Determination of Cerium (IV) // Analytical Chemistry. 1961.23. 3. Pp. 453–456.
  22. Barbanel’ Yu.A., Kolin V.V., Kotlin V.P., Lumpov A.A. Coordination chemistry of actinides in molten salts // Journal of Radioanalytical and Nuclear Chemistry. 1990.143. 1. Pp. 167–179.
  23. Chrissanthopoulos A., Papatheodorou G.N. Temperature dependence of the f-f hypersensitive transitions of Ho3+and Nd3+in molten salt solvents and the structure of the LaCl3-KCl melts // Journal of Molecular Structure. 2006. 782. Pp. 130–142.
  24. Barbanel’, Yu.A. Koordinatsionnaya khimiya f-elementov v rasplavakh (Coordination Chemistry of f Elements in Melts). Moscow: Energoatomizdat. 1985. Pp. 143.
  25. Xoxryakov, A.A., Vershinin A.O., Pajvin A.S., Lizin A.A. E`lektronny`e spektry` ionov Nd(III) v rasplavlenny`x ftoridax shhelochny`x metallov // Rasplavy`. 2015. 4. S. 3–11. [In Russian]
  26. Fujii T., Nagai T., Sato N., Shirai O., Yamana H. Electronic absorption spectra of lanthanides in a molten chloride II. Absorption characteristics of neodymium (III) in various molten chlorides // Journal of Alloys and Compounds. 2005. 393. L1–L5.
  27. Photiadis G.M., Borresen B., Papatheodorou G.N. Vibrational modes and structures of lanthanide halide–alkali halide binary melts LnBr-KBr (Ln = La, Nd, Gd) and NdCl3-ACl (A = Li, Na, K, Cs) // J. Chem. Soc., Faraday Trans. 1998.94. 17. Pp. 2605–2613.
  28. Runowski M., et al. UV-Vis-NIR absorption spectra of lanthanide oxides and fluorides // Dalton Trans. 2020. 49. С. 2129. https://doi.org/10.1039/C9DT04921E

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».