MOLECULAR DYNAMICS SIMULATION OF STRATIFICATION IN Bi–Ga MELTS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In present work, the process of stratification in melts of the Bi–Ga system was simulated using molecular dynamics method. The interaction between atoms was specified using a neural network potential parameterized on ab initio data (DeePMD model). The parameterization of the DeePMD potential was performed using an active machine learning algorithm. During molecular dynamics simulation, melts with the compositions GaxBi100 – x where x = 0, 10, …, 90, 100 were cooled from 800 to 300 K. The phase separation was registered by changes in the temperature behavior of the partial radial distribution function for the Ga–Bi pair. It has been established that the DeePMD potential, in the initial training set of which no configurations corresponding to the phase separated state were introduced, is still able to reproduce the stratification in the Bi-Ga system. The concentration range of separation determined by molecular dynamics modeling with the DeePMD potential coincides with the experiment. It was also possible to correctly determine the shift of the maximum of the stratification dome towards melts rich in gallium. However, the stratification dome maximum was incorrectly defined as Ga80Bi20 instead of the experimental Ga70Bi30. In addition, a certain temperature range of the delamination dome is wider than in the experiment. Despite this, the use of neural network potentials in atomistic simulations, as shown in present work, can be effectively used to predict delamination in binary metallic systems.

About the authors

I. A. Balyakin

Institute of Metallurgy UB RAS

Author for correspondence.
Email: i.a.balyakin@gmail.com
Russia, Yekaterinburg

A. A. Yuryev

Institute of Metallurgy UB RAS

Email: i.a.balyakin@gmail.com
Russia, Yekaterinburg

B. R. Gelchinski

Institute of Metallurgy UB RAS

Email: i.a.balyakin@gmail.com
Russia, Yekaterinburg

References

  1. Thornton D.D. The Gallium Melting-Point Standard: A Determination of the Liquid–Solid Equilibrium Temperature of Pure Gallium on the International Practical Temperature Scale of 1968 // Clin. Chem. Oxford Academic. 1977. 23. № 4. P. 719–724.
  2. Cahill J.A., Kirshenbaum A.D. The density of liquid bismuth from its melting point to its normal boiling point and an estimate of its critical constants // J. Inorg. Nucl. Chem. Pergamon. 1963. 25. № 5. P. 501–506.
  3. Xie H., Zhao H., Wang J., Chu P., Yang Z., Han C., Zhang Y. High-performance bismuth-gallium positive electrode for liquid metal battery // J. Power Sources. Elsevier. 2020. 472. P. 228634.
  4. Okamoto H. Supplemental Literature Review of Binary Phase Diagrams: Bi–Ga, Bi–Y, Ca–H, Cd–Fe, Cd–Mn, Cr–La, Ge–Ru, H–Li, Mn–Sr, Ni–Sr, Sm–Sn, and Sr–Ti // J. Phase Equilibria Diffus. Springer New York LLC. 2015. 36. № 3. P. 292–303.
  5. Taylor L., Rusack E., Zemleris V., Sklyarchuk V., Mudry S., Yakymovych A. Viscosity of Bi–Ga liquid alloys // J. Phys. Conf. Ser. IOP Publishing. 2008. 98. № 6. P. 062021.
  6. Yagodin D.A., Filippov V.V., Popel P.S., Sidorov V.E., Son L.D. Density and ultrasound velocity in Ga–Bi melts // J. Phys. Conf. Ser. IOP Publishing. 2008. 98. № 6. P. 062019.
  7. Inui M., Takeda S., Uechi T. // The Physical Society of Japan. 2013. 61. № 9. P. 3203–3208. http://dx.doi.org/10.1143/JPSJ.61.3203
  8. Hildebrand J.H., Scott R.L. Solutions of Nonelectrolytes // Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303-0139, USA. 2003. 1. № 1. P. 75–92. https://doi.org/10.1146/annurev.pc.01.100150.000451.
  9. Mott B.W. Immiscibility in liquid metal systems // J. Mater. Sci. Kluwer Academic Publishers. 1968. 3. № 4. P. 424–435.
  10. Kohn W., Sham L.J. Self-consistent equations including exchange and correlation effects // Phys. Rev. American Physical Society. 1965. 140. № 4A. P. A1133.
  11. Mishin Y. Machine-learning interatomic potentials for materials science // Acta Mater. Pergamon. 2021. 214. P. 116980.
  12. Behler J., Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces // Phys. Rev. Lett. 2007. 98. № 14. Р. 146401.
  13. Singraber A., Behler J., Dellago C. Library-Based LAMMPS Implementation of High-Dimensional Neural Network Potentials // J. Chem. Theory Comput. American Chemical Society. 2019. 15. № 3. P. 1827–1840.
  14. Behler J., Parrinello M. Generalized neural-network representation of high-dimensional potential-energy surfaces // Phys. Rev. Lett. American Physical Society. 2007. 98. № 14. P. 146401.
  15. Wang H., Zhang L., Han J., E W. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics // Comput. Phys. Commun. North-Holland. 2018. 228. P. 178–184.
  16. Balyakin I.A., Yuryev A.A., Filippov V.V., Gelchinski B.R. Viscosity of liquid gallium: Neural network potential molecular dynamics and experimental study // Comput. Mater. Sci. Elsevier. 2022. 215. P. 111802.
  17. Zhang Y., Wang H., Chen W., Zeng J., Zhang L., Wang H., E W. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models // Comput. Phys. Commun. Elsevier B.V. 2019. 253. Р. 107206.
  18. Kresse G., Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set // Phys. Rev. B. American Physical Society. 1996. 54. № 16. P. 11169.
  19. Thompson A.P., Aktulga H.M., Berger R., Bolintineanu D.S., Brown W.M., Crozier P.S., in ’t Veld P.J., Kohlmeyer A., Moore S.G., Nguyen T.D., Shan R., Stevens M.J., Tranchida J., Trott C., Plimpton S.J. LAMMPS – a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales // Comput. Phys. Commun. North-Holland. 2022. 271. P. 108171.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (340KB)
3.

Download (737KB)
4.

Download (278KB)

Copyright (c) 2023 И.А. Балякин, А.А. Юрьев, Б.Р. Гельчинский

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».