X-Domain of nsp-3 Protein of the SARS-CoV-2 Coronavirus Is Capable of Deforming Membranes and Initiating of the Double-Membrane Vesicle Formation Depending on the Cholesterol Content
- Autores: Makhonko A.A1, Denieva Z.G1, Batishchev O.V1
-
Afiliações:
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
- Edição: Volume 42, Nº 6 (2025)
- Páginas: 504-512
- Seção: Articles
- URL: https://bakhtiniada.ru/0233-4755/article/view/362241
- DOI: https://doi.org/10.7868/S3034521925060072
- ID: 362241
Citar
Resumo
Sobre autores
A. Makhonko
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscow, Russia
Z. Denieva
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscow, Russia
O. Batishchev
Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences
Email: olegbati@gmail.com
Moscow, Russia
Bibliografia
- Masters P.S. 2006. The molecular biology of coronaviruses. Adv. Virus Res. 66, 193–292. https://doi.org/10.1016/S0065-3527(06)66005-3
- Perlman S., Netland J. 2009. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol. 7 (6), 439–450. https://doi.org/10.1038/nrmicro2147
- Reguera J., Mudgal G., Santiago C., Casasnovas J.M. 2014. A structural view of coronavirus-receptor interactions. Virus Res. 194, 3–15. https://doi.org/10.1016/j.virusres.2014.10.005
- Neuman B.W., Angelini M.M., Buchmeier M.J. 2014. Does form meet function in the coronavirus replicative organelle? Trends Microbiol. 22 (11), 642–647. https://doi.org/10.1016/j.tim.2014.06.003
- Ulasli M., Verheije M.H., De Haan C.A.M., Reggiori F. 2010. Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus: Coronavirus-induced membrane rearrangements. Cell. Microbiol. 12 (6), 844–861. https://doi.org/10.1111/j.1462-5822.2010.01437.x
- Miller S., Krijnse-Locker J. 2008. Modification of intracellular membrane structures for virus replication. Nat. Rev. Microbiol. 6 (5), 363–374. https://doi.org/10.1038/nrmicro1890
- Knoops K., Kikkert M., Worm S.H., Zevenhoven-Dobbe J.C., van der Meer Y., Koster A.J., Mommaas A.M., Snijder E.J. 2008. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biology. 6 (9), e226. https://doi.org/10.1371/journal.pbio.0060226
- Netherton C.L., Wileman T. 2011. Virus factories, double membrane vesicles and viroplasm generated in animal cells. Curr. Opin. Virol. 1 (5), 381–387. https://doi.org/10.1016/j.coviro.2011.09.008
- Hsu N.Y., Ilnytska O., Belov G., Santiana M., Chen Y.H., Takvorian P.M., Pau C., van der Schaar H., Kaushik-Basu N., Balla T., Cameron C.E., Ehrenfeld E., van Kuppeveld F.J., Altan-Bonnet N. 2010. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell. 141 (5), 799–811. https://doi.org/10.1016/j.cell.2010.03.050
- Gosert R., Kanjanahaluethai A., Egger D., Bienz K., Baker S.C. 2002. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J. Virol. 76 (8), 3697–3708. https://doi.org/10.1128/JVI.76.8.3697–3708.2002
- Belov G.A., Nair V., Hansen B.T., Hoyt F.H., Fischer E.R., Ehrenfeld E. 2012. Complex dynamic development of poliovirus membranous replication complexes. J. Virol. 86 (1), 302–312. https://doi.org/10.1128/JVI.05937–11
- Knorr R.L., Dimova R., Lipowsky R. 2012. Curvature of double-membrane organelles generated by changes in membrane size and composition. PLoS ONE. 7 (3), e32753. https://doi.org/10.1371/journal.pone.0032753
- Kondrashov O.V., Akimov S.A. 2022. A mechanism of double-membrane vesicle formation from liquid-ordered/liquid-disordered phase separated spherical membrane. Membranes. 13 (1), 25. https://doi.org/10.3390/membranes13010025
- Molotkovsky R.J., Galimzyanov T.R., Batishchev O.V., Akimov S.A. 2019. The effect of transmembrane protein shape on surrounding lipid domain formation by wetting. Biomolecules. 9 (11), 729. https://doi.org/10.3390/biom9110729
- Pinigin K.V., Kondrashov O.V., Jiménez-Munguía I., Alexandrova V.V., Batishchev O.V., Galimzyanov T.R., Akimov S.A. 2020. Elastic deformations mediate interaction of the raft boundary with membrane inclusions leading to their effective lateral sorting. Sci. Rep. 10 (1), 4087. https://doi.org/10.1038/s41598-020-61110-2
- Roingard P., Eymieux S., Burlaud-Gaillard J., Hourioux C., Patient R., Blanchard E. 2022. The double-membrane vesicle (DMV): A virus-induced organelle dedicated to the replication of SARS-CoV-2 and other positive-sense single-stranded RNA viruses. CMLS. 79 (8), 425. https://doi.org/10.1007/s00018-022-04469-x
- Zimmermann L., Zhao X., Makroczyova J., Wachsmuth-Melm M., Prasad V., Hensel Z., Bartenschlager R., Chlanda P. 2023. SARS-CoV-2 nsp3 and nsp4 are minimal constituents of a pore spanning replication organelle. Nat. Commun. 14 (1), 7894. https://doi.org/10.1038/s41467-023-43666-5
- Casares D., Escribá P.V., Rosselló C.A. 2019. Membrane lipid composition: Effect on membrane and organelle structure, function and compartmentalization and therapeutic avenues. Int. J. Mol. Sci. 20 (9), 2167. https://doi.org/10.3390/ijms20092167
- Yan B., Chu H., Yang D., Sze K.H., Lai P.M., Yuan S., Shuai H., Wang Y., Kao R.Y., Chan J.F., Yuen K.Y. 2019. Characterization of the lipidomic profile of human coronavirus-infected cells: Implications for lipid metabolism remodeling upon coronavirus replication. Viruses. 11 (1), 73. https://doi.org/10.3390/v11010073
- Hoffmann H.H., Sánchez-Rivera F.J., Schneider W.M., Luna J.M., Soto-Feliciano Y.M., Ashbrook A.W., Le Pen J., Leal A.A., Ricardo-Lax I., Michailidis E., Hao Y., Stenzel A.F., Peace A., Zuber J., Allis C.D., Lowe S.W., MacDonald M.R., Poirier J.T., Rice C.M. 2021. Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors. Cell Host Microbe. 29 (2), 267–280.e5. https://doi.org/10.1016/j.chom.2020.12.009
- Denker L., Dixon A.M. 2024. The cell edit: Looking at and beyond non-structural proteins to understand membrane rearrangement in coronaviruses. Arch. Biochem. Biophys. 752, 109856. https://doi.org/10.1016/j.abb.2023.109856
- Oudshoorn D., Rijs K., Limpens R.W.A.L., Groen K., Koster A.J., Snijder E.J., Kikkert M., Bárcena M. 2017. Expression and cleavage of middle east respiratory syndrome coronavirus nsp3–4 polyprotein induce the formation of double-membrane vesicles that mimic those associated with coronaviral RNA replication. mBio. 8 (6), e01658–17. https://doi.org/10.1128/mBio.01658-17
- Armstrong L.A., Lange S.M., Dee Cesare V., Matthews S.P., Nirujogi R.S., Cole I., Hope A., Cunningham F., Toth R., Mukherjee R., Bojkova D., Gruber F., Gray D., Wyatt P.G., Cinati J., Dikic I., Davies P., Kulathu Y. 2021. Biochemical characterization of protease activity of Nsp3 from SARS-CoV-2 and its inhibition by nanobodies. PLOS ONE. 16 (7), e0253364. https://doi.org/10.1371/journal.pone.0253364
- Qin B., Li Z., Tang K., Wang T., Xie Y., Aumonier S., Wang M., Yuan S., Cui S. 2023. Identification of the SARS-unique domain of SARS-CoV-2 as an antiviral target. Nat. Commun. 14 (1), 3999. https://doi.org/10.1038/s41467-023-39709-6
- Акимов С.А., Молотковский Р.Ю., Галимзянов Т.Р., Радаев А.В., Шилова Л.А., Кузьмин П.И., Батищев О.В., Воронина Г.Ф., Чизмаджев Ю.А. 2014. Модель слияния мембран: непрерывный переход в пору слияния с учетом гидрофобных и гидратационных взаимодействий. Биол. мембраны. 31 (1), 14–24. https://doi.org/10.7868/S0233475514010022
- Molotkovsky R., Galimzyanov T., Jiménez-Munguía I., Pavlov K., Batishchev O., Akimov, S. 2017. Switching between successful and dead-end intermediates in membrane fusion. Int. J. Mol. Sci. 18 (12), 2598. https://doi.org/10.3390/ijms18122598
- Fehr A.R., Channappanavar R., Jankevicius G., Fett C., Zhao J., Athmer J., Meyerholz D.K., Ahel I., Perlman S. 2016. The conserved coronavirus macrodomain promotes virulence and suppresses the innate immune response during severe acute respiratory syndrome coronavirus infection. mBio. 7 (6), e01721-16. https://doi.org/10.1128/mBio.01721-16
- Arya R., Kumari S., Pandey B., Mistry H., Bihani S.C., Das A., Prashar V., Gupta G.D., Panicker L., Kumar M. 2021. Structural insights into SARS-CoV-2 proteins. J. Mol. Biol. 433 (2), 166725. https://doi.org/10.1016/j.jmb.2020.11.024
- Saikatendu K.S., Joseph J.S., Subramanian V., Clayton T., Griffith M., Moy K., Velasquez J., Neuman B.W., Buchmeier M.J., Stevens R.C., Kuhn P. 2005. Structural basis of severe acute respiratory syndrome coronavirus ADP-ribose-1"-phosphate dephosphorylation by a conserved domain of nsp3. Structure. 13 (11), 1665–1675. https://doi.org/10.1016/j.str.2005.07.022
- Egloff M.P., Malet H., Putics A., Heinonen M., Dutartre H., Frangeul A., Gruez A., Campanacci V., Cambillau C., Ziebuhr J., Ahola T., Canard B. 2006. Structural and functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J. Virol. 80 (17), 8493–8502. https://doi.org/10.1128/JVI.00713-06
- Putics A., Gorbalenya A.E., Ziebuhr J. 2006. Identification of protease and ADP-ribose 1"-monophosphatase activities associated with transmissible gastroenteritis virus non-structural protein 3. J. Gen. Virol. 87 (3), 651–656. https://doi.org/10.1099/vir.0.81596-0
- Neuman B.W. 2016. Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles. Antiviral Res. 135, 97–107. https://doi.org/10.1016/j.antiviral.2016.10.005
- Piotrowski Y., Hansen G., Boomaans-van Der Zanden A.L., Snijder E.J., Gorbalenya A.E., Hilgenfeld R. 2009. Crystal structures of the X-domains of a Group-1 and a Group-3 coronavirus reveal that ADP-ribose-binding may not be a conserved property. Protein Sci. 18 (1), 6–16. https://doi.org/10.1002/pro.15
- Imbert I., Snijder E.J., Dimitrova M., Guillemot J.-C., Lécine P., Canard B. 2008. The SARS-coronavirus PLnc domain of nsp3 as a replication/transcription scaffolding protein. Virus Res. 133 (2), 136–148. https://doi.org/10.1016/j.virusres.2007.11.017
- Lei J., Kusov Y., Hilgenfeld R. 2018. Nsp3 of coronaviruses: Structures and functions of a large multidomain protein. Antiviral Res. 149, 58–74. https://doi.org/10.1016/j.antiviral.2017.11.001
- Dimova R., Riske K.A. 2016. Electrodeformation, electroporation, and electrofusion of giant unilamellar vesicles. In: Handbook of Electroporation. Ed. Miklavcic D. Cham: Springer International Publishing, p. 1–18. https://doi.org/10.1007/978-3-319-26779-1_199-1
- Volovik M.V., Denieva Z.G., Gifer P.K., Rakitina M.A., Batishchev O.V. 2024. Membrane activity and viroporin assembly for the SARS-CoV-2 E protein are regulated by cholesterol. Biomolecules. 14 (9), 1061. https://doi.org/10.3390/biom14091061
- Islam M.Z., Alam J.Md., Tamba Y., Karal M.A.S., Yamazaki M. 2014. The single GUV method for revealing the functions of antimicrobial, pore-forming toxin, and cell-penetrating peptides or proteins. Phys. Chem. Chem. Phys. 16 (30), 15752–15767. https://doi.org/10.1039/C4CP00717D
- Shnyrova A.V., Zimmerberg J. 2009. Chapter four – Reconstitution of membrane budding with unilamellar vesicles. Methods Enzymol. 464, 55–75. https://doi.org/10.1016/S0076-6879(09)64004-0
- Somberg N.H., Wu W.W., Medeiros-Silva J., Dregni A.J., Jo H., DeGrado W.F., Hong M. 2022. SARS-CoV-2 envelope protein forms clustered pentamers in lipid bilayers. Biochemistry. 61 (21), 2280–2294. https://doi.org/10.1021/acs.biochem.2c00464
- Shi Z., Baumgart T. 2015. Membrane tension and peripheral protein density mediate membrane shape transitions. Nat. Commun. 6, 5974. https://doi.org/10.1038/ncomms6974
- Loshkareva A.S., Popova M.M., Shilova L.A., Fedorova N.V., Timofeeva T.A., Galimzyanov T.R., Kuzmin P.I., Knyazev D.G., Batishchev O.V. 2023. Influenza A virus M1 protein non-specifically deforms charged lipid membranes and specifically interacts with the raft boundary. Membranes. 13 (1), 76. https://doi.org/10.3390/membranes13010076
- Kordyukova L.V., Konarev P.V., Fedorova N.V., Shtykova E.V., Ksenofontov A.L., Loshkarev N.A., Dadinova L.A., Timofeeva T.A., Abramchuk S.S., Moisenko A.V., Baratova L.A., Svergun D.I., Batishchev O.V. 2021. The cytoplasmic tail of influenza A virus hemagglutinin and membrane lipid composition change the mode of M1 protein association with the lipid bilayer. Membranes. 11 (10), 772. https://doi.org/10.3390/membranes11100772
- Saletti D., Radzimanowski J., Effantin G., Midtvedt D., Mangenot S., Weissenhorn W., Bassereau P., Bally M. 2017. The Matrix protein M1 from influenza C virus induces tubular membrane invaginations in an in vitro cell membrane model. Sci Rep. 7 (1), 40801. https://doi.org/10.1038/srep40801
- Батищев О.В. 2022. Физико-химические механизмы функционирования мембраноактивных белков оболоченных вирусов. Биол. мембраны. 39 (5), 321–336. https://doi.org/10.31857/S0233475522050036
- Boroske E., Elwenspoek M., Helfrich W. 1981. Osmotic shrinkage of giant egg-lectinin vesicles. Biophys. J. 34 (1), 95–109. https://doi.org/10.1016/S0006-3495(81)84839-4
- Chakraborty S., Doktorova M., Molugu T.R., Heberle F.A., Scott H.L., Dzikovski B., Nagao M., Stingaciu L.R., Standaert R.F., Barrera F.N., Katsaras J., Khelashvili G., Brown M.F., Ashkar R. 2020. How cholesterol stiffens unsaturated lipid membranes. Proc. Natl. Acad. Sci. 117 (36), 21896–21905. https://doi.org/10.1073/pnas.2004807117
- Palacios-Rápalo S.N., De Jesús-González L.A., Cordero-Rivera C.D., Farfan-Morales C.N., Osuna-Ramos J.F., Martinez-Mier G., Reyes-Ruiz J.M. 2021. Cholesterol-rich lipid rafts as platforms for SARS-CoV-2 entry. Front. Immunol. 12, 796855. https://doi.org/10.3389/fimmu.2021.796855
Arquivos suplementares

