Functional Role of Piezo1 Channels in Smooth Muscle Cells of Rat Cerebral Arteries in Normal Conditions and in Chronic Carotid Artery Stenosis
- Autores: Gaynullina D.K1,2, Borzykh A.A1, Pechkova M.G1, Bogotskoy K.A1, Tarasova O.S1,3,4
-
Afiliações:
- State Research Center of the Russian Federation – Institute of Medical and Biological Problems, Russian Academy of Sciences
- Lomonosov Moscow State University,
- Lomonosov Moscow State University
- Lomonosov Moscow State University, Medical Research and Educational Institute
- Edição: Volume 42, Nº 6 (2025)
- Páginas: 465-474
- Seção: Articles
- URL: https://bakhtiniada.ru/0233-4755/article/view/362237
- DOI: https://doi.org/10.7868/S3034521925060027
- ID: 362237
Citar
Resumo
Palavras-chave
Sobre autores
D. Gaynullina
State Research Center of the Russian Federation – Institute of Medical and Biological Problems, Russian Academy of Sciences; Lomonosov Moscow State University,
Email: dina.gaynullina@gmail.com
Moscow, Russia; Moscow, Russia
A. Borzykh
State Research Center of the Russian Federation – Institute of Medical and Biological Problems, Russian Academy of SciencesMoscow, Russia
M. Pechkova
State Research Center of the Russian Federation – Institute of Medical and Biological Problems, Russian Academy of SciencesMoscow, Russia
K. Bogotskoy
State Research Center of the Russian Federation – Institute of Medical and Biological Problems, Russian Academy of SciencesMoscow, Russia
O. Tarasova
State Research Center of the Russian Federation – Institute of Medical and Biological Problems, Russian Academy of Sciences; Lomonosov Moscow State University; Lomonosov Moscow State University, Medical Research and Educational InstituteMoscow, Russia; Moscow, Russia; Moscow, Russia
Bibliografia
- Coste B., Mathur J., Schmidt M., Earley T.J., Ranade S., Petrus M.J., Dubin A.E., Patapoutian A. 2010. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 330, 7–12. https://doi.org/10.1126/science.1193270
- Beech D.J., Kalli A.C. 2019. Force sensing by Piezo channels in cardiovascular health and disease. Arterioscler. Thromb. Vasc. Biol. 39, 2228–2239. https://doi.org/10.1161/ATVBAHA.119.313348
- Nagase T., Nagase M. 2024. Piezo ion channels: Long-sought-after mechanosensors mediating hypertension and hypertensive nephropathy. Hypertens. Res. 47, 2786–2799. https://doi.org/10.1038/s41440-024-01820-6
- Retailleau K., Duprat F., Arhatte M., Ranade S.S., Peyronnet R., Martins J.R., Jodar M., Moro C., Offermanns S., Feng Y., Demolombe S., Patel A., Honore E. 2015. Piezo1 in smooth muscle cells is involved in hypertension-dependent Arterial remodeling. Cell. Rep. 13, 1161–1171. https://doi.org/10.1016/j.celrep.2015.09.072
- Chen J., Rodriguez M., Miao J., Liao J., Jain P.P., Zhao M., Zhao T., Babicheva A., Wang Z., Parmisano S., Powers R., Matti M., Paquin C., Soroureddin Z., Shyy J.Y.J., Thistlethwaite P.A., Makino A., Wang J., Yuan J.X.J. 2022. Mechanosensitive channel Piezo1 is required for pulmonary artery smooth muscle cell proliferation. Am. J. Physiol. – Lung Cell. Mol. Physiol. 322, L737–L760. https://doi.org/10.1152/ajplung.00447.2021
- Liao J., Lu W., Chen Y., Duan X., Zhang C., Luo X., Lin Z., Chen J., Liu S., Yan H., Chen Y., Feng H., Zhou D., Chen X., Zhang Z., Yang Q., Liu X., Tang H., Li J., Makino A., Yuan J.X.J., Zhong N., Yang K., Wang J. 2021. Upregulation of Piezo1 (Piezo type mechanosensitive ion channel component 1) enhances the intracellular free calcium in pulmonary arterial smooth muscle cells from idiopathic pulmonary arterial hypertension patients. Hypertension. 77, 1974–1989. https://doi.org/10.1161/HYPERTENSIONAHA.120.16629
- Wang Z., Chen J., Babicheva A., Jain P.P., Rodriguez M., Ayon R.J., Ravellette K.S., Wu L., Balistrieri F., Tang H., Wu X., Zhao T., Black S.M., Desai A.A., Garcia J.G.N., Sun X., Shyy J.Y.J., Valdez-Jasso D., Thistlethwaite P.A., Makino A., Wang J., Yuan J.X.J. 2021. Endothelial upregulation of mechanosensitive channel Piezo1 in pulmonary hypertension. Am. J. Physiol. – Cell. Physiol. 321, C1010–C1027. https://doi.org/10.1152/ajpcell.00147.2021
- Szabo L., Balogh N., Tóth A., Angyal Á., Gönczi M., Csiki D.M., Tóth C., Balatoni I., Jeney V., Csernoch L., Dienes B. 2022. The mechanosensitive Piezo1 channels contribute to the arterial medial calcification. Front. Physiol. 13, 1–17. https://doi.org/10.3389/fphys.2022.1037230
- Zhang F.R., Tang J., Lai Y., Mo S.Q., Lin Z.M., Lei Q.Q., Han C.C., Zhou A.D., Lv X.F., Wang C., Ou J.S., Zhou J.G., Pang R.P. 2025. Smooth muscle cell Piezo1 is essential for phenotypic switch and neointimal hyperplasia. Br. J. Pharmacol. 182, 2031–2048. https://doi.org/10.1111/bph.17436
- Fei L., Xu M., Wang H., Zhong C., Jiang S., Lichtenberger F.B., Erdogan C., Wang H., Bonk J.S., Lai E.Y., Persson P.B., Kovács R., Zheng Z., Patzak A., Khedkar P.H. 2023. Piezo1 mediates vasodilation induced by acute hyperglycemia in mouse renal arteries and microvessels. Hypertension. 80, 1598–1610. https://doi.org/10.1161/HYPERTENSIONAHA.122.20767
- Lhomme A., Gilbert G., Pele T., Deweirot J., Henrion D., Baudrimont I., Campagnac M., Marthan R., Guibert C., Ducret T., Savineau J.P., Quignard J.F. 2019. Stretch-activated piezo1 channel in endothelial cells relaxes mouse intrapulmonary arteries. Am. J. Respir. Cell. Mol. Biol. 60, 650–658. https://doi.org/10.1165/rcmb.2018-01970C
- Tykocki N.R., Boerman E.M., Jackson W.F. 2017. Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr. Physiol. 16, 485–581. https://doi.org/10.1002/cphy.c160011
- Dossabhoy S., Arya S. 2021. Epidemiology of atherosclerotic carotid artery disease. Semin. Vasc. Surg. 34, 3–9. https://doi.org/10.1053/J.SEMVASCSURG.2021.02.013
- Holmgren M., Henze A., Wahlin A., Eklund A., Fox A.J., Johansson E. 2024. Phase-contrast magnetic resonance imaging of intracranial and extracranial blood flow in carotid near-occlusion. Neuroradiology. 66, 589–599. https://doi.org/10.1007/s00234-024-03309-y
- Mansour A., Niizuma K., Rashad S., Sumiyoshi A., Ryoke R., Endo H., Endo T., Sato K., Kawashima R., Tominaga T. 2019. A refined model of chronic cerebral hypoperfusion resulting in cognitive impairment and a low mortality rate in rats. J. Neurosurg. 131, 892–902. https://doi.org/10.3171/2018.3.JNS172274
- Jing Z., Shi C., Zhu L., Xiang Y., Chen P., Xiong Z., Li W., Ruan Y., Huang L. 2015. Chronic cerebral hypoperfusion induces vascular plasticity and hemodynamics but also neuronal degeneration and cognitive impairment. J. Cereb. Blood. Flow. Metab. 35, 1249–1259. https://doi.org/10.1038/jcbfm.2015.55
- Bhatia P., Kaur G., Singh N. 2021. Ozagrel a thromboxane A2 synthase inhibitor extenuates endothelial dysfunction, oxidative stress and neuroinflammation in rat model of bilateral common carotid artery occlusion induced vascular dementia. Vascular Pharmacol. 137, 106827. https://doi.org/10.1016/J.VPH.2020.106827
- Mulvany M.J., Halpern W. 1977. Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ. Res. 41, 19–26. https://doi.org/10.1161/01.res.41.1.19
- Spray S., Johansson S.E., Radziwon-Balicka A., Haanes K.A., Warfvinge K., Poulsen G.K., Kelly P.A.T., Edvinsson L. 2017. Enhanced contractility of intraparenchymal arterioles after global cerebral ischaemia in rat – new insights into the development of delayed cerebral hypoperfusion. Acta Physiol. 220, 417–431. https://doi.org/10.1111/apha.12834
- Fadyukova O.E., Storozhevykh T.P., Pinelis V.G., Koshelev V.B. 2004. Ischemic and hemorrhagic disturbances in cerebral circulation after contractile responses of the rat middle cerebral artery. Brain Res. 995, 145–149. https://doi.org/10.1016/j.brainres.2003.09.062
- Marquez-Martín A., Jiménez-Altayó F., Dantas A.P., Caracuel L., Planas A.M., Vila E. 2012. Middle cerebral artery alterations in a rat chronic hypoperfusion model. J. Appl. Physiol. 112, 511–518. https://doi.org/10.1152/japplphysiol.00998.2011
- Davis M.J., Earley S., Li Y-S., Chien S. 2023. Vascular mechanotransduction. Physiol. Rev. 103, 1247–1421. https://doi.org/10.1152/physrev.00053.2021
- Porto Ribeiro T., Barbeau S., Baudrimont I., Vacher P., Freund-Michel V., Cardouat G., Berger P., Guibert C., Ducret T., Quignard J.F. 2022. Piezo1 channel activation reverses pulmonary artery vasoconstriction in an early rat model of pulmonary hypertension: The role of Ca2+ influx and Akt-eNOS pathway. Cells. 11, 2349. https://doi.org/10.3390/cells11152349
- Evans E.L., Cuthbertson K., Endesh N., Rode B., Blythe N.M., Hyman A.J., Hall S.J., Gaunt H.J., Ludlow M.J., Foster R., Beech D.J. 2018. Yodal analogue (Dooku1) which antagonizes Yodal-evoked activation of Piezo1 and aortic relaxation. Br. J. Pharmacol. 175, 1744–1759. https://doi.org/10.1111/bph.14188
- Miron T.R., Flood E.D., Tykocki N.R., Thompson J.M., Watts S.W. 2022. Identification of Piezo1 channels in perivascular adipose tissue (PVAT) and their potential role in vascular function. Pharmacol. Res. 175, 105995. https://doi.org/10.1016/j.phrs.2021.105995
- Kinsella J.A., Debant M., Parsonage G., Morley L.C., Bajarwan M., Revill C., Foster R., Beech D.J. 2024. Pharmacology of PIEZO1 channels. Br. J. Pharmacol. 181, 4714–4732. https://doi.org/10.1111/bph.17351
- El-Rahman R.R., Harraz O.F., Brett S.E., Anfinogenova Y., Mufti R.E., Goldman D., Welsh D.G. 2013. Identification of L- and T-type Ca2+ channels in rat cerebral arteries: Role in myogenic tone development. Am. J. Physiol. – Hear. Circ. Physiol. 304, 58–71. https://doi.org/10.1152/ajpheart.00476.2012
- Kuo I.Y., Ellis A., Seymour V.A.L., Sandow S.L., Hill C.E. 2010. Dihydropyridine-insensitive calcium currents contribute to function of small cerebral arteries. J. Cereb. Blood. Flow Metab. 30, 1226–1239. https://doi.org/10.1038/jcbfm.2010.11
- Kuo I.Y.T., Howitt L., Sandow S.L., McFarlane A., Hansen P.B., Hill C.E. 2014. Role of T-type channels in vasomotor function: Team player or chameleon? Pflugers Arch. Eur. J. Physiol. 466, 767–779. https://doi.org/10.1007/s00424-013-1430-x
- Qi M., Liu R., Zhang F., Yao Z., Zhou M. liang, Jiang X., Ling S. 2024. Roles of mechanosensitive ion channel PIEZO1 in the pathogenesis of brain injury after experimental intracerebral hemorrhage. Neuropharmacology. 251, 109896. https://doi.org/10.1016/j.neuropharm.2024.109896
- Xu F., Xin Q., Ren M., Shi P., Wang B. 2024. Inhibition of piezo1 prevents chronic cerebral hypoperfusion-induced cognitive impairment and blood brain barrier disruption. Neurochem. Int. 175, 105702. https://doi.org/10.1016/j.neuint.2024.105702
Arquivos suplementares

