Конденсация ДНК в бактериях

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Дезоксирибонуклеиновая кислота (ДНК) организована в нуклеоиде активно растущей клетки иерархически – с тремя уровнями компактизации ДНК. Нижний уровень (малый масштаб ≥1 Кбайт пар оснований) обеспечивается взаимодействием со связанными с ДНК белками. Активно растущие клетки поддерживают динамический, далекий от равновесия порядок благодаря метаболизму. При переходе клеток в покоящееся состояние (практически полное отсутствие метаболизма) обычные биохимические способы защиты ДНК перестают работать, и клетки, адаптируясь к новым условиям, вынуждены использовать физические механизмы защиты ДНК. Проведено изучение структуры ДНК в нуклеоиде покоящихся клеток, образующихся при стрессе голодания, с помощью методов дифракции синхротронного излучения и просвечивающей электронной микроскопии (ПЭМ). Экспериментальные результаты позволили визуализировать структуры нижнего иерархического уровня компактизации ДНК в нуклеоиде покоящихся клеток. Впервые проведенная серия дифракционных экспериментов свидетельствует о наличии периодической упорядоченной организации ДНК во всех изученных бактериях. Метод ПЭМ позволил извлечь тонкую визуальную информацию о типе конденсации ДНК в нуклеоиде бактерии Escherichia coli (E. coli). Обнаружены внутриклеточные нанокристаллические, жидкокристаллические и свернутые нуклеосомоподобные структуры ДНК. Свернутая нуклеосомоподобная структура наблюдалась впервые, она является результатом множественного сворачивания длинных молекул ДНК вокруг связывающего ДНК белка голодающих клеток (Dps) и его ассоциатов. Обнаруженные нами различные типы конденсированного состояния ДНК в изучаемых покоящихся клетках E. сoli (гетерогенность конденсации ДНК) дают дополнительные аргументы в пользу концепции, рассматривающей микробную популяцию как многоклеточный организм. Проведено изучение изменений в архитектуре ДНК под влиянием химического аналога аутоиндуктора анабиоза 4-гексилрезорцина (4-ГР). Рост концентрации 4-ГР индуцирует переход части клеток популяции в анабиотическое покоящееся состояние, а затем – и в мумифицированное состояние. Проведенные исследования структуры ДНК в анабиотическом и мумифицированном состояниях показывают спектроскопическую идентичность структуры ДНК в покоящемся анабиотическом состоянии и в покоящемся состоянии, образующемся при стрессе голодания. Исследования структуры ДНК в мумифицированном состоянии показывают сильное отличие последней от структуры ДНК в анабиотическом состоянии.

Об авторах

Ю. Ф. Крупянский

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Email: yufk@chph.ras.ru
Россия, Москва

А. А. Генералова

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Email: yufk@chph.ras.ru
Россия, Москва

В. В. Коваленко

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Email: yufk@chph.ras.ru
Россия, Москва

Н. Г. Лойко

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук; Федеральный исследовательский центр “Фундаментальные основы биотехнологии” Российской академии наук

Email: yufk@chph.ras.ru
Россия, Москва; Россия, Москва

Э. В. Терешкин

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Email: yufk@chph.ras.ru
Россия, Москва

А. В. Моисеенко

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук; Московский государственный университет им. М.В. Ломоносова

Email: yufk@chph.ras.ru
Россия, Москва; Россия, Москва

К. Б. Терешкина

Федеральный исследовательский центр химической физики им. Н.Н. Семёнова Российской академии наук

Email: yufk@chph.ras.ru
Россия, Москва

О. С. Соколова

Московский государственный университет им. М.В. Ломоносова

Email: yufk@chph.ras.ru
Россия, Москва

А. Н. Попов

European Synchrotron Radiation Facility

Автор, ответственный за переписку.
Email: yufk@chph.ras.ru
France, Grenoble, 71, avenue des Martyrs, CS 40220, 38043

Список литературы

  1. Stonington O.G., Pettijohn D.E. // Proc. Natl. Acad. Sci. USA. 1971. V. 68. № 1. P. 6
  2. Verma S.C., Qian Z., Adhya S.L. // PLoS. Genet. 2019. V. 15. № 12. e1008456
  3. Trun N., Marko J. // Amer. Soc Microbiol. News. 1998. V. 64. № 5. P. 276.
  4. Бухарин О.В., Гинцбург А.Л., Романова Ю.М., Эль-Регистан Г.И. Механизмы выживания бактерий. М.: Медицина, 2005.
  5. Ткаченко А.Г. Молекулярные механизмы стрессорных ответов у микроорганизмов. Екатеринбург: Уро РАН, 2012.
  6. Minsky A., Shimoni E., Frenkiel-Krispin D. // Nat. Rev. Mol. Cell. Biol. 2002. V. 3. P. 50.
  7. Grosberg A.Y., Khokhlov A.R. Statistical physics of macromolecules. N.Y.: AIP, 1994.
  8. Bloomfield V.A. // Curr. Opin. Struct. Biol. 1996. V. 6. P. 334.
  9. Циммер К. Микрокосм. E. coli и новая наука о жизни. Пер. с англ. М.: ООО “Альпина нон-фикшн”, 2013.
  10. Крупянский Ю.Ф., Гольданский В.И. // УФН. 2002. Т. 172. № 11. С. 1247.
  11. Крупянский Ю.Ф. // Хим. физика. 2021. Т. 40. № 3. С. 60; https://doi.org/10.31857/S0207401X21030079
  12. Шайтан К.В. // Хим. физика. 2023. Т. 42. № 6. С. 40.
  13. Dekker J., Rippe K., Dekker M., Kleckner N. // Capturing Chromosome Conform. Sci. 2002. V. 295. P. 1306; https://doi.org/10.1126/science.1067799
  14. Simonis M., Klous P., Splinter E. et al. // Nat. Genet. 2006. V. 38. P. 1348; https://doi.org/10.1038/ng1896
  15. Dostie J., Richmond T.A., Arnaout R.A. et al. // Genome Res. 2006. V. 16. P. 1299; https://doi.org/10.1101/gr.5571506
  16. Gennes P.G.D. Scaling concepts in polymer physics. Ithaca: Cornell University Press, 1979.
  17. Grosberg A.Y., Nechaev S.K., Shakhnovich E.I. // J. Phys. 1988. V. 49. P. 2095.
  18. Lieberman-Aiden E., Van Berkum N.L., Williams L. et al. // Science. 2009. V. 326. P. 289.
  19. Mirny L.A. // Chromosome Res. 2011. V. 19. P. 37.
  20. Яшина Е.Г., Григорьев С.В. // ЖЭТФ. 2019. Т. 156. Вып. 3. С. 540.
  21. Zwietering M.H., Jongenburger I., Rombouts F.M., van’t Riet K. // Appl. Environ. Microbiol. 1990. V. 56. № 6. P. 1875.
  22. Loiko N., Danilova Y., Moiseenko A. et al. // PLOS One. 2020. V. 15. № 10; https://doi.org/10.1371/journal.pone.0231562
  23. Шрёдингер Э. Что такое жизнь с точки зрения физики? М.: РИМИС, 2009.
  24. Moiseenko A., Loiko N., Sokolova O.S., Krupyanskii Y.F. // Methods in Molecular Biology. 2022. V. 2516. P. 143; https://doi.org/10.1007/978-1-0716-2413-5_9
  25. Синицын Д.О., Лойко Н.Г., Гуларян С.К. и др. // Хим. физика. 2017. Т. 36. № 9. С. 59.
  26. Крупянский Ю.Ф., Лойко Н.Г., Синицын Д.О. и др. // Кристаллография. 2018. Т. 63. № 4. С. 572.
  27. Reich Z., Wachtel E., Minsky A. // Science. 1994. V. 264. № 5164. P. 1460.
  28. Frenkiel-Krispin D., Ben-Avraham I., Englander J. et al. // Mol. Microbiol. 2004. V. 51. P. 395.
  29. Kovalenko V., Popov A., Santoni G. et al. // Acta Cryst. 2020. V. F76. P. 568.
  30. Moiseenko A., Loiko N., Tereshkina K. et al. // Biochem. Biophys. Res. Commun. 2019. V. 517. № 3. P. 463.
  31. Tereshkin E., Tereshkina K., Loiko N. et al. // J. Biomol. Struct. Dyn. 2019. V. 37. P. 2600.
  32. Терешкин Э.В., Терешкина К.Б., Коваленко В.В. и др. // Хим. физика. 2019. Т. 38. № 10. С. 48.
  33. Tereshkin E.V., Tereshkina K.B., Krupyanskii Y.F. // J. Physics: Conf. Ser. 2021. V. 2056. № 1. P. 012016.
  34. Blinov V.N., Golo V.L., Krupyanskii Y. // Nanostuctures. Math. Phys. Model. 2015. V. 12. P. 5.
  35. Vasilevskaya V.V., Khokhlov A.R., Kidoaki S., Yoshikawa K. // Biopolymers. 1997. V. 41. P. 51.
  36. Loiko N., Danilova Y., Moiseenko A. et al. // bioRxiv. 2020. P. 2020.03.27.011494; https://doi.org/10.1101/2020.03.27.011494
  37. Shapiro J.A. // Scientific American. 1988. V. 258. № 6. P. 82.
  38. Shapiro J.A., Dworkin M. // Quarterly Rev. Biol. 1998. V. 73. № 3. P. 352.
  39. Сузина Н.Е., Мулюкин А.Л., Лойко Н.Г. и др. // Микробиология. 2001. Т. 70. № 5. С. 776.
  40. Procopio A., Malucelli E., Pacureanu A. et al. // ACS Central Science. 2019. V. 5. P. 1449.
  41. Santos S., Yang Y., Rosa M. et al. // Scientific Reports. 2019. V. 9. P. 17217.
  42. Ou H.D., Phan S., Deerinck T.J. et al. // Science. 2017. V. 357. № 6349. eaag0025; https://doi.org/10.1126/science.aag0025

© Ю.Ф. Крупянский, А.А. Генералова, В.В. Коваленко, Н.Г. Лойко, Э.В. Терешкин, А.В. Моисеенко, К.Б. Терешкина, О.С. Соколова, А.Н. Попов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».