——— ХИМИЧЕСКАЯ ФИЗИКА НАНОМАТЕРИАЛОВ ——

УЛК 538.935

КИНЕТИКА РАСПАДА ВОЗБУЖДЕННОГО СИНГЛЕТНОГО СОСТОЯНИЯ В ПЛЕНКАХ РУБРЕНА С ОБРАЗОВАНИЕМ ПАР Т-ЭКСИТОНОВ. МЕХАНИЗМ И ПРОЯВЛЕНИЕ МИГРАЦИИ ЭКСИТОНОВ

© 2023 г. А. И. Шушин^{1*}, С. Я. Уманский¹, Ю. А. Чайкина¹

¹Федеральный исследовательский центр химической физики им. Н.Н. Семёнова, Российской академии наук, Москва, Россия

*E-mail: shushin@chph.ras.ru
Поступила в редакцию 01.09.2022;
после доработки 13.10.2022;
принята в печать 20.10.2022

Проведен анализ кинетики распада (расщепления) синглетного возбужденного состояния S_1^* молекул рубрена на пару триплетных (T) экситонов в его пленках. В анализе кинетика описывалась в терминах кинетики спада флуоресценции (КСФ) из S_1^* -состояния — $p_s(t)$. Последняя, как известно, существенно контролируется процессами диффузионной миграции и аннигиляции T-экситонов. Рассмотрены две модели миграции: модель двух состояний (МДС), трактующая эффект миграции как результат переходов между [TT]-состоянием связанных экситонов (на малых T—T-расстояниях r) и [T+T]-состоянием мигрирующих экситонов (на больших r), а также модель свободной миграции (МСМ), пренебрегающая эффектом [TT]-состояния. В рамках МДС и МСМ получены выражения для $p_s(t)$, использованные далее при описании КСФ $p_s^{exp}(t)$, измеренной в аморфных пленках рубрена. Показано, что в исследованном диапазоне времен: 0.4-200 нс, МДС воспроизводит поведение $p_s^{exp}(t)$ заметно точнее, чем МСМ. При бо́льших $t \gtrsim 10^3$ нс предсказывается заметное различие ($\gtrsim 25\%$) между $p_s^{exp}(t)$ и МСМ-вариантом $p_s(t)$, лежащее за пределами ошибки измерения $p_s^{exp}(t)$ ($\lesssim 3\%$).

Ключевые слова: распад синглета, триплет-триплетная аннигиляция.

DOI: 10.31857/S0207401X23120105, EDN: XTMPPU

1. ВВЕДЕНИЕ

Распад возбужденного синглетного состояния на пару триплетных (T) экситонов (TT-пару) является важным фотофизическим процессом, оказывающим серьезное влияние на фотоэлектрические и спинтронные свойства органических полупроводников, в частности на спад быстрой флуоресценции [1-3]. Эксперименты по изучению этого процесса активно проводятся в течение многих лет [1-3]. Интенсивные экспериментальные исследования обуславливают большой интерес к развитию теории для их описания [3-10].

Теоретический анализ характерных свойств кинетики распада синглетного состояния обычно проводятся в рамках общей кинетической схемы:

$$S_{0} + S_{0} \xleftarrow{k_{r}} S_{0} + S_{1}^{*} \xleftarrow{k_{s}}$$

$$\longleftrightarrow [TT] \xleftarrow{k_{e}} [T + T],$$

$$(1)$$

в которой все стадии традиционно трактуются как реакции первого порядка. Первичная стадия распада представляет собой переход (с константой скорости k_{-s}) из возбужденного состояния

 $(S_0 + S_1^*)$ в промежуточное [TT]-состояние (далее называемое c-состоянием) пары взаимодействующих T-экситонов в синглетном состоянии. Эволюция [TT]-состояния определяется TT-аннигиляцией, диссоциацией в состояние свободных T-экситонов, обозначаемое [T+T]-состоянием (а также e-состоянием), и обратным захватом в [TT]-состояние со скоростями k_s, k_e и k_{-e} соответственно. Распад S_1^* -состояния сопровождается также дезактивацией состояния со скоростью k_r .

Помимо общей схемы часто обсуждается также ее упрощенный вариант, в котором [TT]-состояние отсутствует, т.е. предполагается, что распад $(S_0 + S_1^*)$ -состояния осуществляется напря-

мую в состояние [T+T] и обратно со скоростями k_{-s} и k_s соответственно. Анализ распада в рамках этой упрощенной схемы, показанной ниже (см. схему (11)), будет представлена ниже в п. 2.2.

Наблюдаемой традиционно является кинетическая зависимость $I_{S_1}(t)$ спада флуоресценции (КСФ) из S_1^* -состояния. В нашей работе мы будем анализировать нормированную (экспериментально измеренную) КСФ $p_s^{exp}(t) = I_{S_1}(t)/I_{S_1}(0)$, которая целиком определяется временной зависимостью заселенности $p_s(t)$ S_1^* -состояния (для которой $p_s(0)=1$), поскольку $I_{S_1}(t)=k_rp_s(t)$, и, следовательно $p_s^{exp}(t)=p_s(t)$. В соответствии с этой формулой особенности кинетики S_1^* -распада будут в дальнейшем анализироваться путем сравнения экспериментальной КСФ $p_s^{exp}(t)$ с рассчитанной функцией $p_s(t)$, которая в дальнейшем будет называться теоретической КСФ.

Детальные теоретические исследования кинетики S_1^* -распада (1) проведены в большом количестве работ [1—5]. Следует заметить, однако, что большинство экспериментальных результатов интерпретировалось с использованием вышеупомянутой упрощенной экспоненциальной модели (1) [3, 4, 11—13].

В данной работе в рамках более корректных моделей двух состояний (МДС) [14–16] (см. п. 2.1), а также в рамках традиционной модели свободной Т-миграции (МСМ) (см. п. 2.2) мы проведем сравнительный анализ кинетики S_1^* -распада и КСФ, экспериментально измеренной в аморфных пленках рубрена [11], в широком диапазоне исследованных времен.

2. МОДЕЛИ РАСПАДА СИНГЛЕТНОГО СОСТОЯНИЯ

2.1. Модель двух состояний

В обобщенной МДС (для процесса (1)) первая стадия, $\left(S_0 + S_1^*\right) \leftrightarrow [TT]$, трактуется как реакция первого порядка. Вторая же стадия, $[TT] \leftrightarrow [T+T]$, интерпретируется в приближении двух состояний, развитом ранее для описания диффузионного выхода частицы из потенциальной ямы [14—16]. В этом приближении пространственная эволюция TT-пар моделируется переходами между двумя состояниями: промежуточным [TT]-состоянием (в области потенциальной ямы) взаимодействующих экситонов и [T+T]-состоянием свободно диффундирующих T-экситонов.

В МДС зависящая от времени заселенность $p_s(t)$ состояния S_1^* контролируется пространственно-временной эволюцией ТТ-пар в [ТТ]- и [Т+Т]-состояниях, описываемой заселенностями $\sigma(t)$ и $\rho(r,t)$ этих двух состояний соответственно (r- межэкситонное расстояние). Рассматриваемые заселенности удовлетворяют стохастическому уравнению Лиувилля [17], которое в МДС записывается в форме трех связанных уравнений [14—16]:

$$\dot{p}_{s} = -(k_{r} + k_{-s}) p_{s} + k_{s} \sigma,$$
 (2)

$$\dot{\sigma} = -(k_s + K_-)\sigma + S_l(K_+ l)\rho_l + k_{-s}p_s, \tag{3}$$

$$\dot{\rho} = -\hat{\mathbf{L}}_{r}\rho + \left[S_{l}^{-1}K_{-}\sigma - (K_{+}l)\rho_{l}\right]\delta(r-l), \qquad (4)$$

где $S_l = 4\pi l^2$, $\hat{\mathbf{L}}_r = -D_r r^{-2} \partial_r \left(r^2 \partial_r \right)$ — радиальная часть оператора диффузии (с коэффициентом относительной диффузии D_r) и $\rho_l(t) = \rho(l,t)$.

Члены, пропорциональные скоростям K_{\pm} , представляют вышеупомянутые переходы между [TT]-состоянием внутри ямы радиусом l и [T+T]-состоянием свободной Т-диффузии вне ямы. В используемой МДС мы рассмотрим реалистичный предел быстрых переходов, т.е. больших K_{\pm} , в котором

$$K_{\pm} \rightarrow \infty$$
, $K_{-}/K_{+} = K_{eq} = l^{3}/Z_{w} \sim \exp(-\varepsilon_{c}/(k_{B}T))$. (5)

$$Z_{w} = \int_{r-l} dr r^{2} \exp(-U(r)/k_{B}T) \sim l^{2} \lambda \exp(\varepsilon_{c}/k_{B}T)$$

— статистическая сумма состояний в яме потенциала ТТ-взаимодействия U(r) глубиной ε_c , радиусом l (радиусом дна ямы) и шириной $\lambda \lesssim l$, определяемой соотношением $U(l\pm \lambda/2) - U(l) \approx k_B T$ [15, 16]. Выражение (5) представляет собой формулировку принципа детального равновесия [16], в котором константа равновесия K_{eq} будет рассматриваться как подгоночный параметр.

Схема (1) подразумевает для уравнений (2)—(4) начальные условия в виде

$$p_{s}(t=0) = 1, \ \sigma(t=0) = \rho(r,t=0) = 0.$$
 (6)

Уравнение (4) необходимо решать с граничным условием полного отражения для $\rho(r,t)$ при r=l: $\partial_r \rho|_{r=l} = 0$.

Решение уравнений может быть получено путем преобразования Лапласа, определяемого для произвольной функции $\varphi(t)$ как

$$\tilde{\varphi}(\epsilon) = \int_{0}^{\infty} dt \varphi(t) e^{-\epsilon t} \quad \text{if} \quad \varphi(t) = \frac{1}{2\pi i} \int_{-i\infty}^{i\infty} d\epsilon \tilde{\varphi}(\epsilon) e^{\epsilon t}.$$

В частности, для $\tilde{p}_s(\epsilon)$ получаем

$$\tilde{p}_{s}(\epsilon) = \tilde{p}_{s}^{c}(\epsilon) = \left[\epsilon + k_{rs} - (k_{-s}k_{s})G_{c}(\epsilon)\right]^{-1}.$$
 (7)

В этой формуле $k_{rs} = k_r + k_{-s}$ и

$$G_c(\epsilon) = \left[\epsilon + k_s + K_e(\epsilon)\right]^{-1} \tag{8}$$

 образ Лапласа функции эволюции для [TT]-состояния (т.е. с-состояния), распадающегося с эффективной скоростью

$$K_e(\epsilon) = k_e + \mathfrak{X}_e(\epsilon),$$
 (9)

где $\mathfrak{X}_{\varrho}(\epsilon) = \xi_{\varrho}(k_{\varrho}\epsilon)^{1/2}$.

Поведение $K_e(\epsilon)$ определяется величиной двух параметров

$$k_e = k_D (l^3 / Z_w), \quad \xi_e = (k_e / k_D)^{1/2},$$
 (10)

где $k_D = D_r/l^2$.

Скорость $K_e(\epsilon)$ существенно определяет кинетику диффузионно-ассистируемой ТТ-аннигиляции [12] и, следовательно, КСФ $p_s(t) = p_s^c(t)$. Стоит обратить внимание на функцию $\mathfrak{E}_e(\epsilon)$ (см. (9)), которая обуславливает обратностепенное $(p_s^c(t) \sim t^{-3/2})$ поведение КСФ на больших временах. Заметим также, что $\mathfrak{E}_e(\epsilon)$ растет с увеличением ξ_e , приводя к большой величине эффекта Т-миграции в КСФ в случае $\xi_e > 1$, реализующемся в пределе малой глубины потенциальной ямы ТТ-взаимодействия в [ТТ]-состоянии [14—16].

2.2. Модель свободной миграции Т-экситонов

Модель свободной миграции Т-экситонов, часто используемая для качественного описания КСФ [1—3], представляет собой упрощенный вариант общей модели (1) (рассмотренной в п.2.1), в которой пренебрегается влиянием связанного [ТТ]-состояния на КСФ. В этом случае процесс формирования КСФ представляется кинетической схемой

$$S_0 + S_0 \xleftarrow{k_r} S_0 + S_1^* \xrightarrow{k_s} [T + T], \qquad (11)$$

и описывается парой кинетических уравнений, схожих с уравнениями (3) и (4):

$$\dot{p}_s = -\left(\overline{k}_r + \overline{k}_{-s}\right) p_s + \left(\overline{k}_s l\right) S_l \rho_l, \tag{12}$$

$$\dot{\rho} = -\hat{\mathbf{L}}_r \rho + \left[S_l^{-1} \overline{k}_{-s} p_s - \left(\overline{k}_s l \right) \rho_l \right] \delta(r - l), \qquad (13)$$

в которых \overline{k}_{-s} и \overline{k}_s — эффективные константы скорости процессов генерации ТТ-пар и их аннигиляции соответственно. Решение этих уравнений

приводит к выражению для образа Лапласа КСФ, аналогичному формуле (7):

$$\tilde{p}_{s}(\epsilon) = \tilde{p}_{s}^{d}(\epsilon) = \left[\epsilon + \overline{k}_{rs} - \left(\overline{k}_{-s}\overline{k}_{s}\right)G_{d}(\epsilon)\right]^{-1}, \quad (14)$$

в котором $\overline{k}_{rs} = \overline{k}_r + \overline{k}_{-s}$ и

$$G_d(\epsilon) = \left[k_s + K_d(\epsilon)\right]^{-1}.$$
 (15)

В выражении (15) $K_d(\epsilon)$ определяется как

$$K_d(\epsilon) = k_D \left[1 + (\epsilon/k_D)^{1/2} \right], \tag{16}$$

где $k_D = D_r/l^2$.

Формулы (14)—(16) предсказывают КСФ $p_s(t) = p_s^d(t)$, отличающуюся от функции $p_s(t) = p_s^c(t)$, получаемой с использованием выражений (7)—(9), хотя на малых временах $t \lesssim k_{rs}^{-1}$, \overline{k}_{rs}^{-1} (напомним, что $k_{rs} = k_r + k_{-s}$) и при асимптотически больших $t \gg k_{rs}^{-1}$, k_D^{-1} поведение зависимостей $p_s(t)$, найденных в рамках обеих моделей, оказывается схожим: экспоненциальным на малых временах и обратностепенным: $p_s(t) \sim t^{-3/2}$, на больших. Важное отличие МСМ от МДС, однако, наблюдается на относительно малых временах перехода от экспоненциальной стадии КСФ к обратностепенной, что будет предметом обсуждения в разд. 3.

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Выражения, полученные в рамках двух моделей, МДС и МСМ, представляют большой интерес для описания кинетики спада флуоресценции из S_1^* -состояния в процессе распада (с образованием ТТ-пар), представленном на схеме (1). В дальнейшем обсуждении МДС и МСМ будут использованы для анализа КСФ в аморфных пленках рубрена, недавно измеренной с высокой точностью [11]. Сравнение экспериментальной КСФ с теоретическими МДС- и МСМ-зависимостями $p_s(t)$ даст возможность сделать вывод о реальном механизме эффекта относительной миграции Т-экситонов в формировании КСФ.

В рамках вышерассмотренных моделей (МДС и МСМ) выражения для КСФ $\tilde{p}_s(\epsilon)$ представляются следующими формулами:

$$\tilde{p}_{s}(\epsilon) = \tilde{p}_{s}^{c}(\epsilon) = \left[\epsilon + k_{rs} - \frac{k_{-s}k_{s}}{\epsilon + k_{s} + k_{e} + \xi_{e}(k_{e}\epsilon)^{1/2}}\right]^{-1} (17)$$

— в МДС, причем $k_{rs} = k_r + k_{-s}$ (см. также (9) и (10));

$$\tilde{p}_{s}(\epsilon) = \tilde{p}_{s}^{d}(\epsilon) = \left[\epsilon + \overline{k}_{rs} - \frac{\overline{k}_{-s}\overline{k}_{s}}{\overline{k}_{s} + k_{D} + (k_{D}\epsilon)^{1/2}}\right]^{-1}$$
(18)

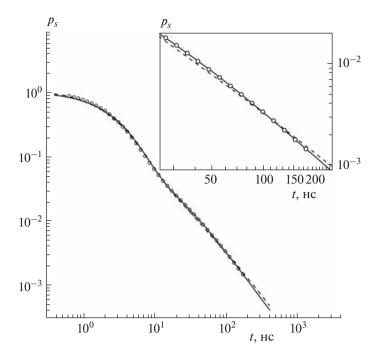


Рис. 1. Подгонка экспериментальной КСФ $p_s^{exp}(t)$, измеренной в аморфной пленке рубрена [11] (кружки), к теоретическим КСФ $p_s(t) = p_s^v(t)$, рассчитанным в рамках МДС (v = c) — сплошная линия и МСМ (v = d) — штриховая линия с использованием формул (17), (18) и значений: $k_{rs} = 0.37~{\rm Hc}^{-1}$ и $\overline{k}_{rs} = 0.48~{\rm Hc}^{-1}$, а также ${\bf Z} = (0.80; 0.16; 0.14; 1.7)$ и ${\bf Z} = (0.96; 0.060; 0.046)$ — см. (19) и (20). На вставке представлены те же результаты в ограниченном диапазоне времен ($25 \le t \le 200~{\rm hc}$), но в крупном масштабе, для более отчетливой демонстрации точности подгонки.

— в МСМ где $\overline{k}_{rs} = \overline{k}_r + \overline{k}_{-s}$. Остальные параметры определены в формулах (13) и (16).

Обратное преобразование Лапласа функций $\tilde{p}_{s}^{v}(\epsilon)$, где v=c,d, дает КСФ $p_{s}^{v}(t)$, которые демонстрируют существенный эффект свободной Т-миграции (в [T + T]-состоянии). Этот эффект проявляется, в частности, в медленной долговременной зависимости $p_{s}^{v}(t) \sim t^{-3/2}$ [15, 16].

Расчет и анализ кинетических функций $p_s^c(t)$ и $p_s^d(t)$ проводился с использованием ряда параметров, которые трактовались как подгоночные: констант скоростей k_{rs} и \overline{k}_{rs} (в МДС и МСМ соответственно), а также ряда безразмерных параметров, для удобства представленных в виде векторов \mathbf{Z} и $\overline{\mathbf{Z}}$ в двух упомянутых выше моделях:

$$\mathbf{Z} = (z_{-s}, z_{s}, z_{e}, \xi_{e}) \tag{19}$$

— в МДС с параметрами $z_q = k_q/k_{rs}$, где q = -s, s, e;

$$\overline{\mathbf{Z}} = (\overline{z}_{-s}, \overline{z}_{s}, \overline{z}_{D}) \tag{20}$$

— в МСМ, причем $\overline{z}_q=\overline{k}_q/\overline{k}_{rs}$ (q=-s,s,e). В МДС и МСМ введем также параметры $z_r=1-z_{-s}$ и $\overline{z}_r=1-\overline{z}_{-s}$.

На рис. 1 приведены теоретические зависимости $p_s^c\left(t\right)$ и $p_s^d\left(t\right)$, наиболее точно воспроизводящие КСФ

$$p_s^{exp}(t) = I_{S_s}(t)/I_{S_s}(0),$$
 (21)

измеренную в аморфной пленке рубрена в широком диапазоне времен: $0.4 \lesssim t \lesssim 200$ нс [11] (см. разд. 1). Использованные значения констант скоростей k_{rs} и \overline{k}_{rs} , а также параметров \mathbf{Z} и $\overline{\mathbf{Z}}$ приведены в подписях к рис. 1. В дальнейшем мы не будем обсуждать конкретные значения параметров, сосредоточившись на анализе возможности однозначного выбора наиболее адекватной модели миграции \mathbf{T} -экситонов (МДС или МСМ) из сравнения расчетных КСФ-зависимостей $p_s^c(t)$ и $p_s^d(t)$ с экспериментальной КСФ $p_s^{exp}(t)$, определенной в (21).

На первый взгляд, обе функции, $p_s^c(t)$ и $p_s^d(t)$, вполне удовлетворительно согласуются с $p_s^{exp}(t)$. Однако, как показывает детальный анализ, КСФ $p_s^{exp}(t)$, измеренной с высокой точностью $(\delta_{exp} \lesssim 3\%,$ см. вставку на рис. 1), функция $p_s^c(t)$

заметно точнее воспроизводит поведение $p_s^{exp}(t)$, особенно в области достаточно больших времен $t \gtrsim 30$ нс перехода от экспоненциального к обратно-степенному поведению КСФ $p_s^{exp}(t)$. Это означает, что модель двух состояний (17), учитывающую эффект промежуточного [TT]-состояния (см. схему (1)), следует считать наиболее точной и реалистичной.

Убедительно продемонстрировать этот факт можно, используя функцию

$$\Delta_s(t) = \Delta_s^v(t) = p_s^v(t)/p_s^{exp}(t) - 1$$
, $v = c,d$, (22) характеризующую относительное отклонение $p_s^v(t) - p_s^{exp}(t) = \Delta_s^v(t) \, p_s^{exp}(t)$. На рис. 2 приведены графики функций $\Delta_s^c(t)$ и $\Delta_s^d(t)$ в области времен $30 \leq t \leq 200$ нс. Вертикальными отрезками на этих графиках указана ошибка δ_Δ рассчитанных функций $\Delta_s^v(t)$ ($\delta_\Delta \sim \delta_{exp} \lesssim 3\%$), обусловленная вышеупомянутой ошибкой (δ_{exp}) измерения КСФ $p_s^{exp}(t)$ [11].

В терминах параметров $\Delta_s^v(t)$ хорошее согласие теоретической и экспериментальной КСФ проявляется в малой абсолютной величине $\Delta_s^v(t)$. Сравнение рассчитанных отклонений $\Delta_s^c(t)$ и $\Delta_s^d(t)$ отчетливо демонстрирует, что в диапазоне времен $30 \lesssim t \lesssim 200$ нс МДС-функция $p_s^c(t)$ позволяет воспроизвести поведение измеренной КСФ $p_s^{exp}(t)$ с заметно большей точностью, чем функция $p_s^d(t)$, предсказываемая МСМ, что выражается соотношением $|\Delta_s^c(t)| \leqslant |\Delta_s^d(t)|$. Это соотношение надежно соблюдается даже с учетом ошибки δ_Δ в оценке величин $\Delta_s^c(t)$ и $\Delta_s^d(t)$, указанной на рис. 2.

С еще большей надежностью справедливость соотношения $\left|\Delta_s^c(t)\right| \ll \left|\Delta_s^d(t)\right|$, гарантирующего более высокую точность описания процесса (1) в рамках МДС (с использованием формулы (17)), могла бы быть зафиксирована при временах t>200 нс. В подтверждение этого заключения на рис. 2 дополнительно приведена вспомогательная функция

$$\Delta_s(t) = \Delta_s^{dc}(t) = p_s^d(t)/p_s^c(t) - 1 \approx \Delta_s^d(t),$$

рассчитанная в более широком диапазоне времен: $30 \lesssim t < 10^3$ нс. Соотношение $\Delta_s^{dc}(t) \approx \Delta_s^d(t)$ легко понять, принимая во внимание, что на этих временах с хорошей точностью $p_s^c(t) \approx p_s^{exp}(t)$. Предпола-

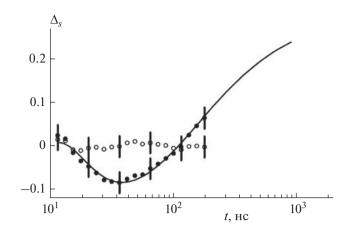


Рис. 2. Относительные отклонения $\Delta_s(t) = \Delta_s^v(t)$ теоретических КСФ $p_s^v(t)$, v = c, d, от экспериментальной КСФ $p_s^{exp}(t)$ (см. (22)), рассчитанные с использованием результатов, представленных на рис. 1. Отклонения $\Delta_s^c(t)$ и $\Delta_s^d(t)$ изображены светлыми и черными кружками соответственно. На графиках функций $\Delta_s^c(t)$ и $\Delta_s^d(t)$ короткие вертикальные линии обозначают ошибку рассчитанных отклонений (обусловленных ошибкой измерения $p_s^{exp}(t)$ [11]). Сплошная линия — поведение относительного отклонения $\Delta_s(t) = \Delta_s^{dc}(t) = p_s^d(t)/p_s^c(t)$ — 1 теоретических КСФ $p_s^c(t)$ и $p_s^d(t)$ в диапазоне времен $30 \leq t < 10^3$ нс (см. разд. 3).

гая справедливость соотношения $p_s^c(t) \approx p_s^{exp}(t)$ во всем диапазоне $30 \lesssim t < 10^3$ нс, получаем приведенную на рис. 2 зависимость $\Delta_s^{dc}(t) \approx \Delta_s^d(t)$, демонстрирующую весьма существенное относительное отклонение $p_s^d(t)$ от предполагаемой КСФ $p_s^{exp}(t)$ при $t \sim 10^3$ нс ($\approx 25\%$), достигающее $\sim 50\%$ при $t \gg 10^3$ нс. Наблюдение подобных отклонений могло бы послужить однозначным доказательством применимости МДС для описания процесса (1) в аморфных молекулярных полупроволниках.

4. ЗАКЛЮЧЕНИЕ

В данной работе проанализированы две модели для описания кинетики расщепления возбужденного S_1^* -состояния на пару Т-экситонов (которая ассоциируется с кинетикой (1) спада S_1^* -флуоресценции $p_s(t)$) в аморфных пленках молекулярных полупроводников: модель двух состояний и модель свободной миграции Т-экситонов,

подробно описанные в разд. 2. Существенным этапом анализа стала подгонка теоретических зависимостей (в рамках упомянутых двух моделей) к кинетической зависимости $S_1^* \to [T+T]$ -расщепления $p_s^{exp}(t)$, измеренной в аморфных пленках рубрена в широком диапазоне времен: $0.4 \lesssim t \lesssim 200$ нс [11]. Результаты такой подгонки показали, что МДС позволяет описать экспериментальную кинетику с заметно лучшей точностью, чем МСМ.

Высокая точность аппроксимации свидетельствует, что МДС, основанная на предположении о наличии квазистационарного [TT]-состояния в реакции S_1^* -расщепления $S_1^* \to [T+T]$, является наиболее реалистичной моделью исследуемого процесса (1). Показано также, что более высокая точность МДС особенно заметно проявляется на больших временах $t \gtrsim 10^3$ нс, на которых отклонение КСФ, предсказываемой МСМ, от экспериментально полученной может превышать 25% (см. рис. 2), в отличие от МДС-варианта КСФ.

В заключение кратко обсудим возможную природу слабого ТТ-взаимодействия (ТТВ), наличие которого может привести к образованию промежуточного квазистационарного [ТТ]-состояния. Одной из причин возникновения эффективного ТТВ могут быть структурные особенности аморфной пленки рубрена в области локализации ТТ-пары. Дополнительный существенный вклад в ТТВ может обуславливаться ван-дер-ваальсовым взаимодействием молекул в возбужденном Т-состоянии (образующих ТТ-пары), которое, как ожидается, сравнимо с тепловой энергией вследствие высокой поляризуемости молекул рубрена (особенно в Т-состоянии) [2].

Необходимо также добавить, что при анализе кинетики процесса (1) мы пренебрегли спиновыми эффектами на стадии ТТ-аннигиляции, которые могут весьма существенно проявляться в КСФ [6, 10, 17–20]. В действительности, однако, в процессах в аморфных пленках эти эффекты во многих случаях пренебрежимо слабы вследствие быстрой спин-решеточной релаксации в Т-экситонах, приводящей к сильному уменьшению амплитуды спиновых эффектов. Соответствующие оценки для пленок рубрена приведены в работах [12, 20].

Работа выполнена при финансовой поддержке Министерством науки и высшего образования Российской Федерации в рамках госзадания (тема № AAAA-A19-119012890064-7).

СПИСОК ЛИТЕРАТУРЫ

Smith M.B., Michl J. // Annu. Rev. Phys. Chem. 2013.
 V. 64. P. 361;

- https://doi.org/10.1146/annurev-physchem-040412-110130
- Casanova D. // Chem. Rev. 2018. V. 118. P. 7164; https://doi.org/10.1021/acs.chemrev.7b00601
- Miyata K., Conrad-Burton F.S., Geyer F.L. et al. // Chem. Rev. 2019. V. 84. P. 4261; https://doi.org/10.1021/acs.chemrev.8b00572
- 4. *Merrifield R.E.* // J. Chem. Phys. 1968. V. 48. P. 4318; https://doi.org/10.1063/1.1669777
- Suna A. // Phys. Rev. B. 1970. V. 1. P. 1716; https://doi.org/10.1103/PhysRevB.1.1716
- Konyaev S.N., Shushin A.I., Kolesnikova L.I. et al. // Phys. Stat. Sol. B. 1987. V. 142. P. 461.
- 7. *Tarasov V.V.*, *Zoriniants G.E.*, *Shushin A.I. et al.* // Chem. Phys. Lett. 1997. V. 267. P. 58; https://doi.org/10.1016/S0009-2614(97)00056-0
- 8. Ветчинкин А.С., Уманский С.Я., Чайкина Ю.А. и др. // Хим. физика. 2022. Т. 41. № 9. С. 72; https://doi.org/10.31857/S0207401X22090102
- Ryansnyanskiy A., Biaggio I. // Phys. Rev. B. 2011.
 V. 84. P. 193203; https://doi.org/10.1103/PhysRevB.84.193203
- Shushin A.I. // J. Chem. Phys. 2022. V. 156. P. 074703; https://doi.org/10.1063/5.0078158
- Piland G.B., Burdett J.J., Kurunthu D. et al. // J. Phys. Chem. C. 2013. V. 117. P. 1224; https://doi.org/10.1021/jp309286v
- 12. *Шушин А.И.* // Хим. физика. 2017. Т. 36. № 11. С. 17; https://doi.org/10.7868/S0207401X17110085
- 13. *Pilland G.B., Burdett J.J., Dillon R.J. et al.* // J. Phys. Chem. Lett. 2014. V. 5. P. 2312; https://doi.org/10.1021/jz500676c
- 14. *Shushin A.I.* // Chem. Phys. Lett. 1985. V. 118. P. 197; https://doi.org/10.1016/0009-2614(85)85297-0
- 15. *Shushin A.I.* // J. Chem. Phys. 1991. V. 95. P. 3657; https://doi.org/10.1063/1.460817
- Shushin A.I. // J. Chem. Phys. 1992. V. 97. P. 1954; https://doi.org/10.1063/1.463132
- 17. *Buchachenko A.L.* // Rus. J. Phys. Chem. B. 2022. V. 16. P. 9; https://doi.org/10.1134/S1990793122010031
- Buchachenko A.L., Kuznetsov D.A. // Rus. J. Phys. Chem. B. 2021. V. 15. P. 1; https://doi.org/10.1134/S1990793121010024
- 19. *Лундин А.А.*, *Зобов В.Е.* // Хим. физика. 2021. Т. 40. № 9. С. 41; https://doi.org/10.31857/S0207401X21090077
- 20. *Shushin A.I.* // Chem. Phys. Lett. 2017. V. 678. P. 283; https://doi.org/10.1016/j.cplett.2017.04.068