АЛГОРИТМ ОБНАРУЖЕНИЯ АТМОСФЕРНЫХ ОСАДКОВ ДЛЯ ЗАДАЧ КОМПЬЮТЕРНОЙ ОБРАБОТКИ ВИДЕОИЗОБРАЖЕНИЙ

Обложка

Цитировать

Полный текст

Аннотация

Показана актуальность задачи обнаружения и уменьшения видимости атмосферных осадков на видеоизображениях, полученных неподвижными камерами. Выполнен статистический анализ геометрических (площадь, коэффициент формы, отклонение ориентации от средней по кадру) и цветояркостных (интенсивность, насыщенность цвета) характеристик частиц дождя и снега с целью обоснования решающих правил выделения пикселей частиц осадков. Данный анализ заключается в получении распределений исследуемых параметров частиц и аппроксимации их известными законами распределений с использованием метода семейства кривых Пирсона, критерия Колмогорова и симплекс-алгоритма Нелдера–Мида. Разработан алгоритм детектирования капель дождя и снежинок на видеопоследовательностях, который предполагается к использованию в составе алгоритма уменьшения видимости атмосферных осадков. Предложенный подход представлен в виде многоступенчатой классификации пикселей кадра на зоны с движущимися объектами и области неподвижного фона, искажаемые и неискажаемые частицами осадков в течение накопленных кадров. В зависимости от области, к которой относится обрабатываемый пиксель, итоговое решение об отнесении его к классу атмосферных осадков принимается с использованием предложенных решающих правил или разработанной процедуры пороговой обработки с автоматическим определением локальных пороговых значений. Выполнено экспериментальное исследование предложенного алгоритма и с использованием двухкритериального подхода определены оптимальные значения числа накопленных кадров для корректной работы алгоритма: 100 кадров для видеоизображений с дождем; и 140 кадров для видео со снегом. Выигрыш разработанного подхода по сравнению с известными по оценкам вероятностей ошибок первого и второго рода составляет до 1.7 и 9.1% соответственно.

Об авторах

В. Т. Дмитриев

Рязанский государственный радиотехнический университет имени В.Ф. Уткина

Email: vol77@rambler.ru
Россия, 390005, Рязань, ул. Гагарина, д. 59/1

А. А. Бауков

Рязанский государственный радиотехнический университет имени В.Ф. Уткина

Автор, ответственный за переписку.
Email: baukov.andrej@yandex.ru
Россия, 390005, Рязань, ул. Гагарина, д. 59/1

Список литературы

  1. Визильтер Ю.В., Желтов С.Ю., Бондаренко А.В., Осоков М.В., Моржин А.В. Обработка и анализ изображений в задачах машинного зрения: Курс лекций и практических занятий. М.: Физматкнига, 2010. 672 с.
  2. Garg K., Nayar S.K. Vision and rain // International Journal of Computer Vision. 2007. V. 75. № 1. P. 3–27.
  3. Jia Z., Wang H., Caballero R.E., Xiong Z., Zhao J., Finn A. A two-step approach to see-through bad weather for surveillance video quality enhancement // Machine Vision and Applications. 2012. V. 23. № 6. P. 1059–1082.
  4. Brewer N., Liu N. Using the shape characteristics of rain to identify and remove rain from video // Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR). Berlin, Heidelberg: Springer, 2008. P. 451–458.
  5. Bossu J., Hautiere N., Tarel J. Rain or Snow Detection in Image Sequences through use of a Histogram of Orientation of Streaks // International Journal of Computer Vision. 2011. № 93.
  6. Кириллов С.Н., Покровский П.С., Бауков А.А. Алгоритм уменьшения влияния атмосферных осадков на качество видеоизображений в системах управления // Сб. тез. докл. научно-техн. конф. “Техническое зрение в системах управления – 2019”. 2019. С. 34–35.
  7. Pearson K. Contributions to the Mathematical Theory of Evolution. Skew Variations in Homogeneous Material // Philosophical Transactions of the Royal Society of London. Ser. A. 1895. V. 186. P. 343–414.
  8. Тихонов В.И. Статистическая радиотехника. М.: Радио и связь, 1982. 624 с.
  9. Голик Ф.В. Аппроксимация кривыми Пирсона плотности распределения суммы независимых одинаково распределенных случайных величин // Кибернетика и программирование. 2017. № 2. С. 17–41.
  10. Гончаров В.А. Методы оптимизации. М., 2008. 188 с.
  11. Lagarias J.C., Reeds J.A., Wright M.H., Wright P.E. Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions // SIAM Journal of Optimization. 1998. V. 9. № 1. P. 112–147.
  12. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Высш. шк., 2003. 479 с.
  13. Вероятность и математическая статистика: Энциклопедия / Под ред. Ю.В. Прохорова. М.: Большая Российская энциклопедия, 2003. 912 с.
  14. Вадзинский Р.Н. Справочник по вероятностным распределениям. СПб.: Наука, 2001. 295 с.
  15. Гонсалес Р., Вудс Р. Цифровая обработка изображений. М.: Техносфера, 2012. 1104 с.
  16. Pfister R., Schwarz K.A., Janczyk M., Dale R., Freeman J. Good things peak in pairs: a note on the bimodality coefficient // Frontiers in psychology. 2013. V. 4.
  17. Савинов А.Н., Иванов В.И. Анализ решения проблем возникновения ошибок первого и второго рода в системах распознавания клавиатурного почерка // Вестник ВУиТ. 2011. № 18.
  18. Статистические методы. Вероятность и основы статистики. Термины и определения. ГОСТ Р 50779.10-2000. М.: Госстандарт России, 2001. 42 с.
  19. Лисничук А.А., Батищев А.В. Двухкритериальный синтез OFDM-сигналов для повышения энергетической эффективности и помехоустойчивости // Вестник РГРТУ. 2021. № 76. С. 3–16.
  20. Гонсалес Р., Вудс Р., Эддинс Р. Цифровая обработка изображений в среде MATLAB. М.: Техносфера, 2006. 616 с.

© В.Т. Дмитриев, А.А. Бауков, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».