Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 50, № 10 (2024)

Обложка

Весь выпуск

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Статьи

Октаэдрические галогенидные кластеры ниобия и тантала, содержащие кластерное ядро {M6X12}

Шамшурин М.В., Соколов М.Н.

Аннотация

В обзоре рассмотрены методы синтеза, строение, электронная структура и реакционная способность семейства октаэдрических галогенидных кластеров ниобия и тантала, содержащих кластерное ядро {M6X12}. Рассмотрены также возможные области практического применения данного класса соединений.

Координационная химия. 2024;50(10):629-647
pages 629-647 views

Синтез и строение комплексов марганца с N,N’-бис[(2,4,6-триметилфенил)имино]аценафтеном

Ларичева Ю.А., Гуань Ч., Куратьева Н.В., Ромашев Н.Ф., Гущин А.Л.

Аннотация

Разработаны методы синтеза новых комплексов марганца(II) с N,N’-бис[(2,4,6-триметилфенил)имино]аценафтеном (Тmp-bian): [Mn(Тmp-bian)Br2] (I), [Mn(Tmp-bian)(EtOH)Br2] (Ia), [Mn (Tmp-bian)Cl2] (II), [Mn(Tmp-bian)2(ClO4)2] (III) и [Mn(Tmp-bian)2(OTs)2] (IV). Полученные соединения охарактеризованы с помощью элементного анализа и ИК-спектроскопии. Методом рентгеноструктурного анализа определена молекулярная структура для I, Iа и III (ССDC № 233510–233512). С помощью квантово-химических расчетов в рамках теории функционала плотности (DFT) установлено электронное строение для I и III.

Координационная химия. 2024;50(10):648-660
pages 648-660 views

Аддукты стерически затрудненного катехолата теллура с N-метилпирролидоном

Петров П.А., Филиппова Е.А., Сухих Т.С.

Аннотация

Изучено образование аддуктов 3,6-ди-трет-бутилкатехолата теллура(IV) (Te(Cat36)2) с N-метилпирролидоном (NMP). Установлено, что кристаллизация из смеси CH2Cl2–NMP–ароматический углеводород приводит к образованию димерных комплексов [{Te(Cat36)2}2(μ-NMP)(μ-arene)] (arene = C6H6, C7H8), тогда как из смеси CH2Cl2–NMP–алкан — к моноядерному [Te(Cat36)2(NMP)2]. Образование аддуктов с ароматическими углеводородами указывает на возможную перспективу использования комплексов теллура для разделения смесей углеводородов, в том числе промышленно важной смеси бензол–циклогексан.

Координационная химия. 2024;50(10):661-668
pages 661-668 views

Дилитиевые соли дитопного центросимметричного меркаптобензотиазола: от молекулярного комплекса к люминесцентным 1D-координационным полимерам

Рогожин А.Ф., Ильичев В.А., Силантьева Л.И., Козлова Е.А., Фукин Г.К., Бочкарев М.Н.

Аннотация

Реакцией амида лития LiN(Si(Me)3)2 и дитопного гетероциклического лиганда — бензо[1,2-d:4,5-d′]-бис-тиазол-2,6(3H,7H)-дитиона (H2L) в среде ДМЭ получен биядерный молекулярный комплекс состава Li2L(DME)4 (I). При перекристаллизации соединения I с использованием смеси растворителей ДМСО–диэтиловый эфир или ДМСО/ТГФ были получены новые соединения состава [Li2L(ДМСО)4 • (ДМСО)2]n (II) и [Li2L(ДМСО)4 • (ТГФ)2]n (III) соответственно. По данным РСА, эти соединения являются одномерными координационными полимерами (КП), отличающимися расположением бистиазольных фрагментов относительно друг друга и фрагмента Li2O2 в полимерной цепи, что находит отражение в люминесцентных свойствах. Молекулярное строение I–III установлено с помощью РСА (CCDC № 2334192 (I), 2334193 (II), 2334194 (III)).

Координационная химия. 2024;50(10):669-678
pages 669-678 views

Особенности синтеза 1,3-иминофосфина с 2,1,3-бензотиадиазольным заместителем и комплекса Pt с ним

Хисамов Р.М., Конченко С.Н., Сухих Т.С.

Аннотация

При попытке осуществить синтез нового иминометилфосфина tBuC(Ph2P)=N-Btd (Btd = 2,1,3-бензотиадиазол) по трехстадийной схеме: 1) NH2-Btd + tBuC(=O)Cl → tBuC(=O)NH-Btd; 2) tBuC(=O)NH-Btd + SOCl2tBuC(Cl)=N-Btd; 3) tBuC(Cl)=N-Btd + Ph2PSiMe3tBuC(Ph2P)=N-Btd было обнаружено, что на второй стадии происходит хлорирование карбоцикла бензотиадиазольного фрагмента. Взаимодействие образующегося при этом имидоилхлорида tBuC(Cl)=N-(7-Cl-Btd) с Ph2PSiMe3 приводит к 1,3-иминометилфосфину tBuC(Ph2P)=N-(7-Cl-Btd) (PC=N). Побочными продуктами на этой стадии являются 1,3-аминометилфосфиноксид tBuC{Ph2P(O)}NH-(7-Cl-Btd) (POCN) и (Ph2POx)2, образующиеся в результате частичного окисления и гидролиза. Изучены реакции PC=N и POCN с [Pt(COD)Cl2] (COD = 1.3-циклооктадиен). В случае PC=N реакция приводит к комплексу [Pt(PC=N)2Cl2]. Во втором случае происходит разрыв связи P–C в POCN, из реакционной смеси выделены [PtCl2(Ph2POH)2](POCN) и [Pt(CH3CN){tBuC-NH-(7-Cl-Btd)}Cl]. Строение новых соединений установлено с помощью монокристального РСА (CCDC № 2335150 (tBuC(Cl) N-(7-Cl-Btd)), 2335152 (POCN · Et2O), 2335149 (Ph2POx)2, 2335153 ([Pt(PC=N)2Cl2]), 2335154 ([PtCl2(Ph2POH)2](POCN)), 2335151 ([Pt(CH3CN)(tBuC-NH-(7-Cl-Вbtd))Cl]).

Координационная химия. 2024;50(10):679-692
pages 679-692 views

Соединения s-металлов со спин-меченным нитрофенолом

Кузнецова О.В., Романенко Г.В., Чернавин П.А., Летягин Г.А., Богомяков А.С.

Аннотация

Синтезирована и выделена в виде кристаллов серия парамагнитных солей s-элементов (Li, Na, K, Rb, Cs) с депротонированным нитроксильным радикалом 2-(2-гидрокси-5-нитрофенил)-4,4,5,5-тетраметил-4,5-дигидро-1H-имидазол-3-оксид-1-оксилом (L). Рентгеноструктурное исследование показало, что данные соединения представляют собой полимеры различной размерности (CCDC № 2342497–2342506). По данным квантово-химических расчетов и магнитных измерений установлено, что в парамагнитных солях реализуются преимущественно слабые антиферромагнитные обменные взаимодействия, энергия которых уменьшается с увеличением радиуса иона щелочного металла.

Координационная химия. 2024;50(10):693-707
pages 693-707 views

Слоистые координационные полимеры на основе кластерных комплексов [Re6Q8(CN)6]4– (Q = S или Se) и димерных катионов {(Ag(Dppe))2(μ-Dppe)}2+

Литвинова Ю.М., Гайфулин Я.М., Сухих Т.С., Брылев К.А., Миронов Ю.В.

Аннотация

Изучено взаимодействие солей кластерных анионов [Re6Q8(CN)6]4– с дицианоаргентат-анионом [Ag(CN)2] в присутствии 1,2-бис(дифенилфосфино)этана. В условиях сольвотермального синтеза были получены два новых координационных полимера [{(Ag(Dppe))2(µ-Dppe)}2{Re6S8(CN)6}]·H2O (I) и [{(Ag(Dppe))2(µ-Dppe)}2{Re6Se8(CN)6}]0,85[{(Ag(Dppe))(Ag(DppeSe))(µ-Dppe)}2{Re6Se8(CN)6}]0,15 (II). Исследование монокристаллов соединений методом РСА (CCDC № 2341356 (I) и 2341355 (II)) показало, что они имеют слоистую структуру. Изучение кристаллических порошков соединений методом порошковой дифракции показало, что синтез соединения II приводит к образованию двух кристаллических фаз, одна из которых изоструктурна соединению I. Параметры люминесценции соединений в твердом теле (квантовые выходы, времена жизни эмиссии) схожи с параметрами других координационных полимеров на основе ионов [Re6Q8(CN)6]4–.

Координационная химия. 2024;50(10):708-721
pages 708-721 views

Комплексы лантаноидов(III) на основе трис(2-пиридил)фосфиноксида: первые примеры

Брылева Ю.А., Глинская Л.А., Ыжикова К.М., Артемьев А.В., Рахманова М.И., Баранов А.Ю.

Аннотация

Синтезирована и исследована серия одноядерных комплексов [Ln(Py3PO)2(NO3)3] · 1.5Me2CO (Ln = Sm, Eu, Gd, Tb, Dy) и [Ln(Py3PO)(TTA)3] (Ln = Eu, Tb; TTA = теноилтрифторацетонат-ион) на основе трис(2-пиридил)фосфиноксида (Py3PO). В полученных соединениях Py3PO выступает в качестве N,O-хелатного лиганда, что приводит к формированию координационных полиэдров N2O8 и NO7 атома Ln в комплексах [Ln(Py3PO)2(NO3)3] · 1.5Me2CO и [Ln(Py3PO)(TTA)3] соответственно. Комплексы ионов Sm3+, Eu3+, Tb3+ и Dy3+ проявляют лантаноид-центрированную фотолюминесценцию в твердой фазе при 300 K. Из спектра лиганд-центрированной фосфоресценции комплекса Gd(III) при 77 K определена энергия триплетного уровня T1 Py3PO, равная 21900 см‒1. Найдено, что среди комплексов с ионами NO3 Py3PO проявляет лучшую сенсибилизирующую способность по отношению к Tb3+, а в комплексах с ионами TTA лигандное окружение наиболее эффективно сенсибилизирует люминесценцию иона Eu3+.

Координационная химия. 2024;50(10):722-736
pages 722-736 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».