Структурные характеристики (N-тиоцианато) хроматов(III) комплексов лантаноидов(III) с пиридин-3-карбоновой кислотой

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для завершения исследований двойных комплексных соединений (N-тиоцианато)хроматов(III) комплексов лантаноидов с пиридин-3-карбоновой кислотой синтезированы из водных растворов новые соединения составов [LnL3(H2O)2][Cr(NCS)6] · nH2O (Ln = Pr (I), n = 1.5; Sm (II), Gd (III), Tb (IV), n = 2; L = C6H5NO2). Вещества изучены методами химического анализа, ИК-спектроскопии и РСА (ССDС № 2427051–2427054). В кристаллических структурах комплексов I–IV катион имеет цепочечное строение за счет бидентатно-мостиковой функции молекул пиридин-3-карбоновой (никотиновой) кислоты. Координационное окружение атомов лантаноидов состоит из восьми атомов кислорода, принадлежащих шести молекулам никотиновой кислоты и двум координированным молекулам H2O, расположенных в вершинах искаженной квадратной антипризмы. В изолированных анионах [Cr(NCS)6]3– координационный полиэдр Cr состоит из атомов N шести изотиоцианат-ионов и близок к правильному октаэдру. В структурах комплексов I–IV пространство между полимерными катионами заполнено комплексными анионами и кристаллизационными молекулами воды. Дополнительно структура стабилизируется межмолекулярными водородными связями.

Об авторах

Е. В. Черкасова

Кузбасский государственный технический университет им. Т. Ф. Горбачева

Кемерово, Россия

Н. В. Первухина

Институт неорганической химии им. А. В. Николаева СО РАН

Новосибирск, Россия

Н. В. Куратьева

Институт неорганической химии им. А. В. Николаева СО РАН

Новосибирск, Россия

Т. Г. Черкасова

Кузбасский государственный технический университет им. Т. Ф. Горбачева

Email: ctg.htnv@kuzstu.ru
Кемерово, Россия

Список литературы

  1. Хентов В.Я., Семченко В.В., Шачнева Е.Ю. Процессы комплексообразования природного и техногенного происхождения. М.: РУСАЙНС, 2020. 266 с.
  2. Qiang Zhao, Su-Juan Jin, Zhi Shen et al. // Inorg. Chim. Acta. 2024. V. 567. P. 122061. https://doi.org/10.1016/j.ica.2024.122061
  3. Xiuling Xu, Zhong Wang, Chong-Chong Yan et al. // J. Solid State Chem. 2020. V. 292. P. 121708. https://doi.org/10.1016/j.jssc.2020.121708
  4. Jin Zhang, Jing Huang, Jun Yang, Hong-Ji Chen // Inorg. Chem. Commun. 2012. V. 17. P. 163. https://doi.org/1016/j.inoche.2011.12.042
  5. Xiao-niu Fang, Wen-tong Chen, Dong-sheng Liu // Chem. Res. Chin. Univ. 2008. V. 24. № 5. P. 529. https://doi.org/1016/S1005-9040(08)60111-7
  6. Gonzalez-Vergara E., Hegenauer J., Saltman P. et al. // Inorg. Chim. Acta. 1982. V. 66. P. 115. https://doi.org/10.1016/S0020-1693(00)85799-0
  7. Jia G., Law G.L., Tanner P.A., Wong W.T. // Inorg. Chem. 2008.V. 47. № 20. P. 9431. https://doi.org/10.1021/ic8010103
  8. Alzamly A., Bakiro M., Ahmed S.H. et al. // Coord. Chem. Rev. 2020. V. 425. P. 213543. https://doi.org/1016/jccr.2020.213543
  9. Rong-Hua Hu, Shu Zhen Liu, Yu-Yu Xu et al. // J. Mol. Struct. 2022. V. 1265. P. 133396. https://doi.org/1016/molstruc.2022.133396
  10. Jiang-Gao Mao, Hong-Jie Zhang, Jia-Zuan Ni et al. // Polyhedron. 1998. V. 17. № 23-24. P. 3999. https://doi.org/10.1016/S0277-5387(98)00198-3
  11. Xinrui Wang, Yupeng Jiang, Antoine Tissot, Christian Serre // Coord. Chem. Rev. 2023. V. 497. P. 215454. https://doi.org/10.1016/jccr.2023.215454
  12. Jiménez J.-R., Doistau B., Poncet M., Piguet C. // Coord. Chem. Rev. 2021. V. 434. P. 215454. https://doi.org/10.1016/j.ccr.2023.213750
  13. Kumar S., Maji S., Sundararajan K. // J. Mol. Liquids. 2023. V. 386. P. 122545. https://doi.org/10.1016/j.molliq.2023.2122545
  14. Lis S., Hnatejko Z., Barczynski P., Elbanowski M. // J. Alloys Comp. 2002. V. 344. № 1-2. P. 70. https://doi.org/10.1016/S0925-8388(02)00310-9
  15. Świderski G., Kalinowska M., Wilczewska A.Z. et al. // Polyhedron. 2018. V. 150. № 1. P. 97. https://doi.org/10.1016/j.poly.2018.04.045
  16. Tyunina E.Yu., Mezhevoi I.N., Stavnova A.A. // J. Chem. Thermodynamics. 2021. V. 161. P. 106552. https://doi.org/10.1016/j.jct.2021.106552
  17. Silveira M., Mayer D.A., Rebelatto E.A. et al. // J. Chem. Thermodynamics. 2023. V. 184. P. 107084. https://doi.org/10.1016/j.jct.2021.107084
  18. Zhi Shen, Qiang Zhao, Hai-Quan Xieet et al. // J. Solid State Chem. 2021. V. 302. P. 122437. https://doi.org/10.1016/j.jssc.2021. P.122437
  19. Romanenko N.R., Faraonov M.A., Mikhailenk M.V. et al. // Dyes Pigments. 2023. V. 218. P. 111471. https://doi.org/10.1016/j.dyepig.2023.111471.
  20. Bao-min Luo, Zhi Shen, Qiang Zhao et al. // Inorg. Chim. Acta. 2021. V. 527. P. 120561. https://doi.org/10.1016/j.ica.2021.120561
  21. Hanuza J., Hermanowicz K., Lisiecki R. et al. // Opt. Mater. 2020. V. 109. P. 110208. https://doi.org/10.1016/j.optmat.2020.110208
  22. Abdolmaleki S., Aliabadi A., Ghadermazi M. // Inorg. Chim. Acta. 2022. V. 542. P. 121152. https://doi.org/10.1016/j.ica.2022.121152
  23. Xiaopeng Zhu, Zhipeng Li, Xiaoxi Ji et al. // J. Inorg. Biochem. 2021. V. 222. P. 111505. https://doi.org/10.1016/j.jinorgbio.2021.111505
  24. Cooper J.A., Anderson B.F., Buckley P.D., Blackwell L.F. // Inorg. Chem. Acta. 1984. V. 91. № 1. P. 1. https://doi.org/10.1016/S0020-1693(00)84211-5
  25. Kegley E.B., Spears J.W., Brown Jr T.T. // J. Dairy Sci. 1996. V. 79. № 7. P. 1278. https://doi.org/10.3168/jds.S0022-0302(96)76482-2
  26. Aboshyan-Sorgho L., Cantuel M., Petoud S. et al. // Coord. Chem. Rev. 2012. V. 256. № 15–16. P. 1644. https://doi.org/10.1016/ j.ccr.2011.12.013
  27. Черкасова Е.В., Пересыпкина Е.В., Вировец А.В., Черкасова Т.Г. // Журн. неорган. химии. 2013. Т. 58. № 9. С.1165 (Cherkasova E.V., Peresypkina E.V., Virovets A.V., Cherkasova T.G. // Russ. J. Inorg. Chem. 2013. V. 58. № 9. P. 1040). https://doi.org/10.1134/S0036023613090076
  28. Черкасова Е.В., Первухина Н.В., Куратьева Н.В., Черкасова Т.Г. // Журн. неорган. химии. 2019. Т. 64. № 3. С. 266 (Cherkasova E.V., Pervukhina N.V., Kuratieva N.V., Cherkasova T.G. // Russ. J. Inorg. Chem. 2019. V. 64. № 3. P. 329). https://doi.org/10.1134/S0036023619030070
  29. Черкасова Е.В., Первухина Н.В., Куратьева Н.В. и др. // Журн. неорган. химии. 2018. Т. 63. № 5. С. 896 (Cherkasova E.V., Pervukhina N.V., Kuratieva N.V. et al. // Russ. J. Inorg. Chem. 2018. V. 63. № 5. P. 626). https://doi.org/10.1134/S003602361805011X
  30. Kay J.L., Moore J.W., Glick M.D. // Inorg. Chem. 1972. V.11. № 11. P. 2818. https://doi.org/10.1021/ic50117a047
  31. Sheldrick G.M. SADABS. Version 2.01. Madison (WI, USA): Bruker AXS Inc., 2004. https://doi.org/10.4236/jssm.2017.103018
  32. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1039/p298700000s1
  33. Ferraris G., Franchini-Angela M. // Acta Crystallogr. B. 1972. V. 28. P. 3572. https://doi.org/10.1107/S0567740873003456
  34. Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с (Nakamoto K. Inerared and Raman spectra of inorganic and coordination compounds. New York: John Wiley and Sons, 1986.
  35. Преч Э., Бюльманн Ф., Аффольтер К. Определение строения органических соединений. Таблицы спектральных данных / Под ред. Тарасевича Б.Н. М.: Мир; БИНОМ. Лаборатория знаний, 2006. 439 с. (Pretch E., Bullman P., Affolter C. Structure determination of organic compounds. Table of spectral data. Berlin; Heideberg: Springer-Verlag, 2000.
  36. Смит A. Прикладная ИК-спектроскопия / Под ред. Тарасевича Б.Н. М.: Мир, 1982. 328 с. (Smith A.L. Applied infrared spectroscopy. New York: John Wiley and Sons, 1979.)

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».