Sports Nutrition and Recovery: Key Nutrients and Supplements for Effective Regeneration

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Recovery after physical exercise is a critically important aspect of achieving athletic performance, enabling the body to adapt to workloads and preventing overtraining. The aim of this study is to summarize and analyze scientific data on sports nutrition. The PRISMA 2020 guidelines (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) were utilized for the systematic review. Literature searches were conducted using the databases PubMed, Scopus, Web of Science, and Google Scholar. The search period covered the years 1990 to 2023. Effective recovery after fitness training involves several physiological processes, including glycogen replenishment, muscle tNo. regeneration, hormonal balance normalization, and restoration of electrolyte balance. Nutrition plays a key role in maintaining and accelerating these processes, making it an integral part of recovery programs. Mechanisms contributing to rapid recovery are discussed, including the importance of combining proteins and carbohydrates in a 3 : 1 or 4 : 1 ratio, as well as the significance of hydration and electrolyte replenishment to prevent dehydration. Additionally, supplements such as BCAAs (branched-chain amino acids: leucine, isoleucine, and valine), EAAs (essential amino acids: leucine, isoleucine, valine, lysine, methionine, threonine, phenylalanine, tryptophan, and histidine), and creatine are considered for their roles in enhancing recovery and improving strength performance. Vitamins C and E, with their potent antioxidant properties, protect cells from oxidative stress, further accelerating the recovery process. This review article analyzes current scientific data on sports nutrition, highlighting the role of nutritional components – proteins, carbohydrates, vitamins, and minerals. By integrating various aspects of sports nutrition and supplementation, the article emphasizes their importance in effective post-exercise recovery.

作者简介

S. Shlykov

Stavropol State Agrarian University

Email: olga-sycheva@mail.ru
Stavropol, Russia

O. Sycheva

Stavropol State Agrarian University

Email: olga-sycheva@mail.ru
Stavropol, Russia

R. Omarov

Stavropol State Agrarian University

Email: olga-sycheva@mail.ru
Stavropol, Russia

I. Trubina

Stavropol State Agrarian University

Email: olga-sycheva@mail.ru
Stavropol, Russia

E. Skorbina

Stavropol State Agrarian University

编辑信件的主要联系方式.
Email: olga-sycheva@mail.ru
Stavropol, Russia

参考

  1. O’Connor E., Mündel T., Barnes M.J. Nutritional compounds to improve post-exercise recovery // Nutrients. 2022. V. 14. № 23. P. 5069.
  2. Beelen M., Burke L.M., Gibala M.J. et al. Nutritional strategies to promote postexercise recovery // Int. J. Sport Nutr. Exerc. Metab. 2010. V. 20. № 5. P. 515.
  3. Mielgo-Ayuso J., Fernández-Lázaro D. Nutrition and muscle recovery // Nutrients. 2021. V. 13. № 2. Р. 294.
  4. Waskiw-Ford M., Hannaian S., Duncan J. et al. Leucine-enriched essential amino acids improve recovery from post-exercise muscle damage independent of increases in integrated myofibrillar protein synthesis in young men // Nutrients. V. 12. № 4. Р. 1061.
  5. Volpi E., Kobayashi H., Sheffield-Moore M. et al. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults // Am. J. Clin. Nutr. 2003. V. 78. № 2. P. 250.
  6. Kurosaka M., Machida S. Exercise and skeletal muscle regeneration // J. Phys. Fitness Sports Med. 2012. V. 1. № 3. P. 537.
  7. Tipton K.D. Nutrition for acute exercise-induced injuries // Ann. Nutr. Metab. 2010. V. 57. P. 43.
  8. Tipton K.D., Elliott T.A., Cree M.G. et al. Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise // Am. J. Physiol. Endocrinol. Metab. 2007. V. 292. № 1. P. E71.
  9. Moore D.R., Churchward-Venne T.A., Witard O. et al. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men // J. Gerontol. A Biol. Sci. Med. Sci. 2015. V. 70. № 1. P. 57.
  10. Russo I., Della Gatta P.A., Garnham A. et al. Assessing overall exercise recovery processes using carbohydrate and carbohydrate-protein containing recovery beverages // Front. Physiol. 2021. V. 12. P. 628863.
  11. Boirie Y., Dangin M., Gachon P. et al. Slow and fast dietary proteins differently modulate postprandial protein accretion // Proc. Natl. Acad. Sci. U.S.A. 1997. V. 94. № 26. P. 14930.
  12. Garthe I., Raastad T., Refsnes P.E., Sundgot-Borgen J. Effect of nutritional intervention on body composition and performance in elite athletes // Eur. J. Sport Sci. 2012. V. 13. № 3. P. 295.
  13. Shirreffs S.M., Sawka M.N., Stone M. Water and electrolyte needs for football training and match-play // J. Sports Sci. 2006. V. 24. № 7. P. 699.
  14. Alghannam A.F., Gonzalez J.T., Betts J.A. Restoration of muscle glycogen and functional capacity: Role of post-exercise carbohydrate and protein co-ingestion // Nutrients. 2018. V. 10. № 2. P. 253.
  15. Hearris M.A., Hammond K.M., Fell J.M. et al. Regulation of muscle glycogen metabolism during exercise: Implications for endurance performance and training adaptations // Nutrients. 2018. V. 10. № 3. P. 298.
  16. Ivy J.L., Katz A.L., Cutler C.L. et al. Muscle glycogen synthesis after exercise: Effect of time of carbohydrate ingestion // J. Appl. Physiol. (1985). 1988. V. 64. № 4. P. 1480.
  17. Mamerow M.M., Mettler J.A., English K.L. et al. Dietary protein distribution positively influences 24-h muscle protein synthesis in healthy adults // J. Nutr. 2014. V. 144. № 6. P. 876.
  18. Shirreffs S.M., Sawka M.N., Stone M. Water and electrolyte needs for football training and match-play // J. Sports Sci. 2006. V. 24. № 7. P. 699.
  19. Osmond A.D., Directo D.J., Elam M.L. et al. The effects of leucine-enriched branched-chain amino acid supplementation on recovery after high-intensity resistance exercise // Int. J. Sports Physiol. Perform. 2019. V. 14. № 8. P. 1081.
  20. Hartman J.W., Tang J.E., Wilkinson S.B. et al. Consumption of fat-free fluid milk after resistance exercise promotes greater lean mass accretion than does consumption of soy or carbohydrate in young, novice, male weightlifters // Am. J. Clin Nutr. 2007. V. 86. № 2. P. 373.
  21. Newsholme E.A., Blomstrand E. Branched-chain amino acids and central fatigue // J. Nutr. 2006. V. 136. № 1. P. 274S.
  22. Alcantara J.M.A., Sanchez-Delgado G., Martinez-Tellez B. et al. Impact of cow’s milk intake on exercise performance and recovery of muscle function: A systematic review // J. Int. Soc. Sports Nutr. 2019. V. 16. № 1. P. 22.
  23. Denysschen C.A., Burton H.W., Horvath P.J. et al. Resistance training with soy vs whey protein supplements in hyperlipidemic males // J. Int. Soc. Sports Nutr. 2009. V. 6. P. 8.
  24. Levenhagen D.K., Carr C., Carlson M.G. et al. Postexercise protein intake enhances recovery // Med. Sci. Sports Exerc. 2002. V. 34. № 5. P. 828.
  25. Naclerio F., Seijo M. Whey protein supplementation and muscle mass: current perspectives // Nutr. Diet. Suppl. 2019. V. 2019. № 11. P. 37.
  26. Volpi E., Kobayashi H., Sheffield-Moore M. et al. Essential amino acids are primarily responsible for the amino acid stimulation of muscle protein anabolism in healthy elderly adults // Am. J. Clin. Nutr. 2003. V. 78. № 2. P. 250.
  27. Moro T., Brightwell C.R., Deer R.R. et al. Muscle protein anabolic resistance to essential amino acids does not occur in healthy older adults before or after resistance exercise training // J. Nutr. 2018. V. 148. № 6. P. 900.
  28. Zawadzki K.M., Yaspelkis B.B., Ivy J.L. Carbohydrate-protein complex increases the rate of muscle glycogen storage after exercise // J. Appl. Physiol. 1992. V. 72. № 5. P. 1854.
  29. Burke L.M., Collier G.R., Hargreaves M. Muscle glycogen storage after prolonged exercise: effect of the glycemic index of carbohydrate feedings // J. Appl. Physiol. (1985). 1993. V. 75. № 2. P. 1019.
  30. Little J.P., Chilibeck P.D., Ciona D. et al. Effect of low- and high-glycemic-index meals on metabolism and performance during high-intensity, intermittent exercise // Int. J. Sport Nutr. Exerc. Metab. 2010. V. 20. № 6. P. 447.
  31. Hammond L.R.D., Barfett J., Baker A., McGlynn N.D. Gastric emptying of maltodextrin versus phytoglycogen carbohydrate solutions in healthy volunteers: A quasi-experimental study // Nutrients. 2022. V. 14. № 18. P. 3676.
  32. Saunders M.J., Kane M.D., Todd M.K. Effects of a carbohydrate-protein beverage on cycling endurance and muscle damage // Med. Sci. Sports Exerc. 2004. V. 36. № 7. P. 1233.
  33. Ferguson-Stegall L., McCleave E.L., Ding Z. et al. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis // J. Strength Cond. Res. 2011. V. 25. № 5. P. 1210.
  34. Kerksick C.M., Stout J.R., Campbell B. et al. International Society of Sports Nutrition position stand: Nutrient timing // J. Int. Soc. Sports Nutr. 2008. V. 5. P. 17.
  35. Calder P.C. Omega-3 fatty acids and inflammatory processes // Nutrients. 2010. V. 2. № 3. P. 355.
  36. Simopoulos A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases // Exp. Biol. Med. (Maywood). 2008. V. 233. № 6. P. 674.
  37. Pendergast D.R., Horvath P.J., Leddy J.J., Venkatra-man J.T. The role of dietary fat on performance, metabolism, and health // Am. J. Sports Med. 1996. V. 24. № 6. Suppl. P. S53.
  38. Lytrivi M., Gomes Da Silveira Cauduro C., Kibanda J. et al. Impact of saturated compared with unsaturated dietary fat on insulin sensitivity, pancreatic β-cell function and glucose tolerance: A systematic review and meta-analysis of randomized, controlled trials // Am. J. Clin. Nutr. 2023. V. 118. № 4. P. 739.
  39. Lindsay D.B. Fatty acids as energy sources // Proc. Nutr. Soc. 1975. V. 34. № 3. P. 241.
  40. Balk E., Chung M., Lichtenstein A. et al. Effects of omega-3 fatty acids on cardiovascular risk factors and intermediate markers of cardiovascular disease // Evid. Rep. Technol. Assess. (Summ). 2004. V. 93. P. 1.
  41. Smith G.I., Atherton P., Reeds D.N. et al. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia-hyperaminoacidaemia in healthy young and middle-aged men and women // Clin. Sci. (Lond). 2011. V. 121. № 6. P. 267.
  42. Serhan C.N., Chiang N., Dalli J., Levy B.D. Lipid mediators in the resolution of inflammation // Cold Spring Harb. Perspect. Biol. 2014. V. 7. № 2. P. a016311.
  43. Calder P.C. n-3 PUFA and inflammation: From membrane to nucleus and from bench to bedside // Proc. Nutr. Soc. 2020. V. 79. № 4. P. 404.
  44. Sawka M.N., Burke L.M., Eichner E.R. et al. American College of Sports Medicine position stand. Exercise and fluid replacement // Med. Sci. Sports Exerc. 2007. V. 39. № 2. P. 377.
  45. Cheuvront S.N., Kenefick R.W. Dehydration: Physiology, assessment, and performance effects // Compr. Physiol. 2014. V. 4. № 1. P. 257.
  46. Noakes T. Hyponatremia in distance runners: Fluid and sodium balance during exercise // Curr. Sports Med. Rep. 2002. V. 1. № 4. P. 197.
  47. Bohl C.H., Volpe S.L. Magnesium and exercise // Crit. Rev. Food Sci. Nutr. 2002. V. 42. № 6. P. 533.
  48. Coyle E.F. Fluid and fuel intake during exercise // J. Sports Sci. 2004. V. 22. № 1. P. 39.
  49. Casa D.J., Armstrong L.E., Hillman S.K. et al. National Athletic Trainers' Association position statement: fluid replacement for athletes // J. Athl. Train. 2000. V. 35. № 2. P. 212.
  50. Galloway S.D.R., Maughan R.J. The effects of substrate and fluid provision on thermoregulatory and metabolic responses to prolonged exercise in a hot environment // J. Sports Sci. 2000. V. 18. № 5. P. 339.
  51. Convertino V.A., Armstrong L.E., Coyle E.F. et al. American College of Sports Medicine position stand: Exercise and fluid replacement // Med. Sci. Sports Exerc. 1996. V. 28. № 1. P. i.
  52. Lambert C.P., Frank L.L., Evans W.J. Macronutrient considerations for the sport of bodybuilding // Sports Med. 2004. V. 34. № 5. P. 317.
  53. Blomstrand E., Eliasson J., Karlsson H.K., Köhnke R. Branched-chain amino acids activate key enzymes in protein synthesis after physical exercise // J. Nutr. 2006. V. 136. № 1. P. 269S.
  54. Shimomura Y., Honda T., Shiraki M. et al. Branched-chain amino acid catabolism in exercise and liver disease // J. Nutr. 2006. V. 136. № 1. P. 250S.
  55. Gualano A.B., Bozza T., Lopes De Campos P. et al. Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion // J. Sports Med. Phys. Fitness. 2011. V. 51. № 1. P. 82.
  56. Shimomura Y., Inaguma A., Watanabe S. et al. Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness // Int. J. Sport Nutr. Exerc. Metab. 2010. V. 20. № 3. P. 236.
  57. Tipton K.D., Ferrando A.A., Phillips S.M. et al. Postexercise net protein synthesis in human muscle from orally administered amino acids // Am. J. Physiol. 1999. V. 276. № 4. P. E628.
  58. Hultman E., Söderlund K., Timmons J.A. et al. Muscle creatine loading in men // J. Appl. Physiol. (1985). 1996. V. 81. № 1. P. 232.
  59. Greenhaff P.L., Casey A., Short A.H. et al. Influence of oral creatine supplementation on muscle torque during repeated bouts of maximal voluntary exercise in man // Clin. Sci. (Lond). 1993. V. 84. № 5. P. 565.
  60. Rawson E.S., Volek J.S. Effects of creatine supplementation and resistance training on muscle strength and weightlifting performance // J. Strength Cond. Res. 2003. V. 17. № 4. P. 822.
  61. Santos R.V., Bassit R.A., Caperuto E.C., Costa Rosa L.F. The effect of creatine supplementation upon inflammatory and muscle soreness markers after a 30km race // Life Sci. 2004. V. 75. № 16. P. 1917.
  62. Bemben M.G., Bemben D.A., Loftiss D.D., Knehans A.W. Creatine supplementation during resistance training in college football athletes // Med. Sci. Sports Exerc. 2001. V. 33. № 10. P. 1667.
  63. Buford T.W., Kreider R.B., Stout J.R. et al. International Society of Sports Nutrition position stand: Creatine supplementation and exercise // J. Int. Soc. Sports Nutr. 2007. V. 4. P. 6.
  64. Poortmans J.R., Francaux M. Long-term oral creatine supplementation does not impair renal function in healthy athletes // Med. Sci. Sports Exerc. 1999. V. 31. № 8. P. 1108.
  65. Harris R.C., Tallon M.J., Dunnett M. et al. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis // Amino Acids. 2006. V. 30. № 3. P. 279.
  66. Derave W., Everaert I., Beeckman S., Baguet A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training // Sports Med. 2010. V. 40. № 3. P. 247.
  67. Hobson R.M., Saunders B., Ball G. et al. Effects of β-alanine supplementation on exercise performance: A meta-analysis // Amino Acids. 2012. V. 43. № 1. P. 25.
  68. Baguet A., Bourgois J., Vanhee L. et al. Important role of muscle carnosine in rowing performance // J. Appl. Physiol. (1985). 2010. V. 109. № 4. P. 1096.
  69. Bailey S.J., Winyard P., Vanhatalo A. et al. Dietary nitrate supplementation reduces the O2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans // J. Appl. Physiol. (1985). 2009. V. 107. № 4. P. 1144.
  70. Pérez-Guisado J., Jakeman P.M. Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness // J. Strength Cond. Res. 2010. V. 24. № 5. P. 1215.
  71. Suzuki T., Morita M., Kobayashi Y. et al. Oral L-citrulline supplementation enhances cycling time trial performance in healthy trained men: Double-blind randomized placebo-controlled 2-way crossover study // J. Int. Soc. Sports Nutr. 2016. V. 13. P. 6.
  72. Hill C.A., Harris R.C., Kim H.J. et al. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity // Amino Acids. 2007. V. 32. № 2. P. 225.
  73. Wax B., Kavazis A.N., Weldon K., Sperlak J. Effects of Supplemental Citrulline Malate Ingestion During Repeated Bouts of Lower-Body Exercise in Advanced Weightlifters // J. Strength Cond. Res. 2015. V. 29. № 3. P. 786.
  74. Décombaz J., Beaumont M., Vuichoud J. et al. Effect of slow-release β-alanine tablets on absorption kinetics and paresthesia // Amino Acids. 2012. V. 43. № 1. P. 67.
  75. Sureda A., Córdova A., Ferrer M.D. et al. L-citrulline-malate influence over branched chain amino acid utilization during exercise // Eur. J. Appl. Physiol. 2010. V. 110. № 2. P. 341.
  76. Powers S.K., Jackson M.J. Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production // Physiol. Rev. 2008. V. 88. № 4. P. 1243.
  77. Carr A., Frei B. Does vitamin C act as a pro-oxidant under physiological conditions? // FASEB J. 1999. V. 13. № 9. P. 1007.
  78. Thompson D., Williams C., Garcia-Roves P. et al. Post-exercise vitamin C supplementation and recovery from demanding exercise // Eur. J. Appl. Physiol. 2003. V. 89. № 3–4. P. 393.
  79. Nieman D.C., Wentz L.M. The compelling link between physical activity and the body's defense system // J. Sport Health Sci. 2019. V. 8. № 3. P. 201.
  80. Ji L.L. Antioxidants and oxidative stress in exercise // Proc. Soc. Exp. Biol. Med. 1999. V. 222. № 3. P. 283.
  81. Meydani M., Evans W.J., Handelman G. et al. Protective effect of vitamin E on exercise-induced oxidative damage in young and older adults // Am. J. Physiol. 1993. V. 264. № 5. Pt. 2. P. R992.
  82. Mastaloudis A., Leonard S.W., Traber M.G. Oxidative stress in athletes during extreme endurance exercise // Free Radic. Biol. Med. 2001. V. 31. № 7. P. 911.
  83. Packer L. Protective role of vitamin E in biological systems // Am. J. Clin. Nutr. 1991. V. 53. № 4. P. 1050S.
  84. Traber M.G., Stevens J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective // Free Radic. Biol. Med. 2011. V. 51. № 5. P. 1000.
  85. Torre M.F., Martinez-Ferran M., Vallecillo N. et al. Supplementation with vitamins C and E and exercise-induced delayed-onset muscle soreness: A systematic review // Antioxidants. 2021. V. 10. № 2. P. 279.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».