DISPERSION OF LAMB WAVES IN STEEL PLATES AFTER IRRADIATION WITH ACCELERATED ELECTRONS
- 作者: Vasiliev A.V.1, Perov D.V.2, Biryukov D.Y.1, Kostin V.N.2, Zatsepin A.F.1
-
隶属关系:
- Ural Federal University named after the first President of Russia B.N. Yeltsin
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
- 期: 编号 11 (2025)
- 页面: 3-13
- 栏目: Acoustic methods
- URL: https://bakhtiniada.ru/0130-3082/article/view/306308
- DOI: https://doi.org/10.31857/S0130308225110012
- ID: 306308
如何引用文章
详细
Operating conditions of fuel element cladding materials in nuclear reactors are characterized by intense radiation exposure capable of causing significant changes in their physical and mechanical properties. This work is devoted to the study of Lamb wave dispersion for materials used in fuel element cladding (FE) irradiated with 10 MeV fast electron beams. Complex measurements of the studied samples were carried out before and after irradiation. Irradiation-induced changes in practically important characteristics of steel plates were experimentally established. Based on the experimental data, refined dispersion dependences of Lamb waves were obtained, which made it possible to quantitatively estimate and analyze the degree of radiation modification of the acoustic and elastic characteristics of the material, as well as their correlation with the formation of radiation damage. It was found that Lamb waves excited in the zero symmetric mode are an effective source of information on the irradiation state of the material. The results of the conducted research are of certain interest for the development of the methodological base of ultrasonic non-destructive testing and in the field of physical materials science, related to increasing the reliability and durability of structural materials in extreme conditions. In particular, the obtained data can be used in the development of more accurate models for predicting the behavior of structural materials under conditions of intense radiation loads
作者简介
Alexey Vasiliev
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: vasilev.a.v98@list.ru
ORCID iD: 0000-0002-0469-7568
Postgraduate student at the Physicotechnical Institute of UrFU
俄罗斯联邦, 620002 Yekaterinburg, Mira str., 19Dmitry Perov
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Email: peroff@imp.uran.ru
Candidate of Technical Sciences, Senior Researcher at the Laboratory of Quantum Nanospintronics
俄罗斯联邦, 620108 Yekaterinburg, S. Kovalevskoy str., 18Dmitry Biryukov
Ural Federal University named after the first President of Russia B.N. Yeltsin
Email: bir-70@list.ru
кандидат физико-математических наук
俄罗斯联邦, 620002 Yekaterinburg, Mira str., 19Vladimir Kostin
M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences
Email: kostin@imp.uran.ru
俄罗斯联邦, 620108 Yekaterinburg, S. Kovalevskoy str., 18
Anatoly Zatsepin
Ural Federal University named after the first President of Russia B.N. Yeltsin
编辑信件的主要联系方式.
Email: a.f.zatsepin@urfu.ru
俄罗斯联邦, 620002 Yekaterinburg, Mira str., 19
参考
- Gorbunov V.A., Andrianov S.G., Konoval’tseva S.S. Evaluation of the effect of radiative heat transfer on the parameters of temperature fields of fuel rods of various designs // Bulletin of Ivanovo State Power Engineering University. 2021. No. 2.
- Sukhikh A.V. Cobalt content and vacancy swelling of ChS-68 steel. Atomic Energy. 2007. V. 102. Is. 3. P. 163—168.
- Obidin Yu.V., Petukhov K.V., Potashnikov A.K., Sartakov V.Yu. High-performance industrial tomograph for fuel rod inspection // Interexpo Geo-Siberia. 2006.
- Vasiliev A.V., Biryukov D.Yu., Kostin V.N., Zatsepin A.F. Ultrasonic testing of acoustic and elastic characteristics of 12Kh18N10T steel irradiated with fast electrons // Defectoskopiya. 2025. No. 3. P. 3—13.
- Klyuev V.V. (Ed.), Ermolov I.N., Lange Yu.V. Nondestructive Testing / Handbook in 7 V. V. 2: Ultrasonic Testing. Moscow: Mashinostroenie, 2004. 864 p. (In Russian).
- Lamb H. On waves in an elastic plate // Proc. Roy. Soc. London. Ser. A. 1917. V. 93. P. 114—128.
- Viktorov I.A. Sound Surface Waves in Solids. Moscow: Nauka, 1981. (In Russian).
- Weiland J., Hesser D. F., Xiong W., Schiebahn A., Markert B., Reisgen U. Structural health monitoring of an adhesively bonded CFRP aircraft fuselage by ultrasonic Lamb Waves // Proc. Inst. Mech. Eng. Part G. J. Aerosp. Eng. 2020. V. 234. Is. 13. P. 2000—2010.
- Ong W., Rajic N., Chiu W., Rosalie C. Lamb wave–based detection of a controlled disbond in a lap joint // Struct. Heal. Monit. 2018. V. 17. Is. 3. P. 668—683.
- Petrov Yu.V., Gurevich S.Yu., Golubev E.V. Opto-thermal emitter and EMAT receiver of Lamb waves // Defectoskopiya. 2015. No. 5. P. 17—24.
- Zolotova O.P., Burkov S.I., Sorokin B.P. Propagation of Lamb and SH waves in a plate of piezoelectric cubic crystal // Journal of Siberian Federal University. Mathematics & Physics. 2010. No. 2.
- Burkov M.V., Eremin A.V., Byakov A.V. Diagnostics of impact damage in monolithic and honeycomb carbon fiber composites using ultrasonic Lamb waves // Defectoskopiya. 2021. No. 2. P. 33—43.
- Nedospasov I. A., Mozhaev V. G., Kuznetsova I. E. Unusual energy properties of leaky backward Lamb waves in a submerged plate // Ultrasonics. 2017. V. 77. P. 95—99.
- Park I., Jun Y., Lee U. Lamb wave mode decomposition for structural health monitoring // Wave Motion. 2014. V. 51. P. 335—347.
- Perov D.V., Rinkevich A.B. Localization of reflectors in plates during ultrasonic testing with Lamb waves // Defectoskopiya. 2017. No. 4. P. 27—41.
- Knor G. Damage detection in CFRP plates by means of numerical modeling of Lamb waves propagation // International Journal of Research in Engineering and Technology. 2014. V. 3. No. 12. P. 80—93.
- Liua X., Jiang Z., Yan Z. Improvement of accuracy in damage localization using frequency slice wavelet transform // Shock and Vibration. 2012. V. 19. No. 4. P. 585—596.
- Chen X., Gao Y., Bao L. Lamb wave signal retrieval by wavelet ridge // Journal of Vibroengineering. 2014. V. 16. No. 1. P. 464—476.
- Perov D. V., Rinkevich A. B. Application of wavelets for the analysis of ultrasonic fields detected by a laser interferometer. Basic principles of wavelet analysis // Defectoskopiya. 2001. No. 12. P. 55—66.
- Zatsepin A. F. Acoustic Measurements. Moscow: Yurayt, 2024. 209 p. (In Russian).
- Su Z. Q., Ye L. Identification of damage using Lamb waves: from fundamentals to applications. Berlin, Heidelberg: Springer, 2009. 346 p.
- Viktorov I. A. Physical Fundamentals of the Application of Rayleigh and Lamb Ultrasonic Waves in Engineering. Moscow: Nauka, 1966. 168 p. (In Russian).
- Ermolov I. N., Aleshin N. P., Potapov A. I. Acoustic testing methods / In: Nondestructive Testing. In 5 books. Book 2. Moscow: Vysshaya Shkola, 1991. 283 p. (In Russian).
- Nemyitova O. V., Rinkevich A. B., Perov D. V. Using instantaneous frequency estimation for the classification of echo signals from various reflectors // Defectoskopiya. 2012. No. 11. P. 46—61.
- Muraviev V. V., Muravyeva O. V., Volkova L. V., Kolpakov K. V., Devyaterikov D. I., Kravtsov E. A. Anisotropy of acoustic properties in thin-sheet rolled low-carbon manganese steel // Defectoskopiya. 2024. No. 11. P. 15—29.
- Drouin D., Couture A. R., Joly D., Tastet X., Aimez V., Gauvin R. CASINO V2.42: a fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users // Scanning. 2007. V. 29. No. 3. P. 92—101.
- Achenbach J. D. Wave Propagation in Elastic Solids. Amsterdam: North-Holland, 1973. 425 p.
- Komarov D. V., Konovalov S. V., Zhukov D. V., Vinogradov I. S., Panchenko I. A. Analysis of the current situation in the field of electron-beam processing of various alloys. Part 1 // Polzunovsky Vestnik. 2021. No. 4. P. 129—139.
- Markov A. B., Mesyats G. A., Remnev G. E., Rotshtein V. P., Shulov V. A. Mechanisms for Hardening of Carbon Steel with a Nanosecond High-Energy, High-Current Electron Beam // Materials Science Forum. 2007. V. 539—543. P. 2365—2370.
- Moroz N.I. Modification of the structure and properties of silicon electrical steel by accelerated electrons / In Interaction of Radiation with Solids: Proc. of the 15th Int. Conf. Minsk, September 26—29, 2023. Minsk: BSU, 2023. P. 285—287.
补充文件


