Обратная задача магнитостатики для однородно намагниченных тел в рамках двумерной модели

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Для однородно намагниченных тел в рамках обратной задачи магнитостатики в двумерном случае получено нелинейное одномерное интегродифференциальное уравнение на функцию одного переменного, которая определяет форму магнетика или полости в нем по измеренной напряженности результирующего поля вне тела. Предложен алгоритм численного решения этого уравнения, сводящийся к минимизации функции нескольких переменных. Составлена программа на языке ФОРТРАН, реализующая указанный алгоритм. В качестве тестового и иллюстративного примера по известной напряженности результирующего поля вне магнетика найдено сечение однородного бесконечного цилиндра, находящегося в немагнитной и непрозрачной среде.

Об авторах

В. В. Дякин

Институт физики металлов имени М.Н. Михеева УрО РАН

Email: kudryashova_ov@imp.uran.ru
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108

О. В. Кудряшова

Институт физики металлов имени М.Н. Михеева УрО РАН

Автор, ответственный за переписку.
Email: kudryashova_ov@mail.ru
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108

В. Я. Раевский

Институт физики металлов имени М.Н. Михеева УрО РАН

Email: raevskii@imp.uran.ru
Россия, ул. С. Ковалевской, 18, Екатеринбург, 620108

Список литературы

  1. Печенков А Н., Щербинин В.Е. Некоторые прямые и обратные задачи технической магнитостатики. Екатеринбург: Изд-во УрО РАН, 2004. 177 с.
  2. Печенков А.Н., Щербинин В.Е. О решении обратной задачи магнитостатической томографии // Дефектоскопия. 2009. № 3. С. 37—55.
  3. Печенков А.Н., Щербинин В.Е. К вопросу о неединственности решения обратной задачи магнитостатической дефектоскопии // Контроль. Диагностика. 2006. № 9. С. 59—60.
  4. Печенков А.Н. О влиянии формы тела на единственность решения обратной задачи магнитостатической дефектоскопии // Дефектоскопия. 2006. № 10. С. 24—26.
  5. Дякин В.В. Прямая и обратная задача магнитостатики // Дефектоскопия. 1996. № 3. С. 3—6.
  6. Дякин В.В., Кудряшова О.В., Раевский В.Я. К вопросу о корректности прямой и обратной задачи магнитостатики. Часть 2 // Дефектоскопия. 2018. № 10. С. 15—24.
  7. Реутов Ю.Я., Гобов Ю.Л., Лоскутов В.Е. О возможностях использования программы ELCUT в расчетах по дефектоскопии // Дефектоскопия. 2002. № 6. С. 34—40.
  8. Загидулин Р.В., Дякин В.В., Дударев М.С., Щербинин В.Е. К определению геометрических размеров поверхностного дефекта / Физические методы и приборы НК. Тезисы докладов X Уральской научной технической конференции. Ижевск. 1989. С. 83.
  9. Новослугина А.П., Смородинский Я.Г. Расчетный способ оценки параметров дефектов в сталях // Дефектоскопия. 2017. № 11. С. 13—19.
  10. Дякин В.В., Раевский В.Я., Кудряшова О.В. Поле конечного дефекта в пластине // Дефектоскопия. 2009. № 3. С. 67—79.
  11. Кротов Л.Н. Реконструкция границы раздела сред по пространственному распределению магнитного поля рассеяния. 1. Исследование свойств решения вспомогательной прямой задачи // Дефектоскопия. 2004. № 2. С. 76—82.
  12. Кротов Л.Н. Реконструкция границы раздела сред по пространственному распределению магнитного поля рассеяния. 2. Постановка и метод решения обратной геометрической задачи магнитостатики // Дефектоскопия. 2004. № 6. С. 76—82.
  13. Слесарев Д.А., Барат В.А., Чобану П.М. Снижение погрешности статистического метода оценки параметров дефектов в магнитной дефектоскопии // Дефектоскопия. 2012. № 1. С. 69—74.
  14. Гобов Ю.Л., Никитин А.В., Попов С.Э. Решение обратной геометрической задачи магнитостатики для дефектов коррозии // Дефектоскопия. 2018. № 10. С. 51—57.
  15. Дякин В.В., Кудряшова О.В., Раевский В.Я. Обратная задача магнитостатики в полях насыщения // Дефектоскопия. 2019. № 10. С. 35—44.
  16. Ахиезер А.И. Общая физика. Электрические и магнитные явления. Киев: Наукова думка, 1981. 471 с.
  17. Печенков А.Н., Щербинин В.Е. Метод создания однородной намагниченности и определения магнитной восприимчивости // Дефектоскопия. 2002. № 7. С. 47—50.
  18. Хижняк Н.А. Интегральные уравнения макроскопической электродинамики. Киев: Наукова думка, 1986. 279 с.
  19. Friedman M.J. Mathematical Study of the Nonlinear Singular Integral Magnetic Field Equation. 1. // SIAM J. Appl. Math. 1980. V. 39. No. 1. P. 14—20.
  20. Friedman M.J. Mathematical Study of the Nonlinear Singular Integral Magnetic Field Equation. 2. // SIAM J. Numer. Anal. 1981. V. 18. No. 4. P. 644—653.
  21. Friedman M.J. Mathematical Study of the Nonlinear Singular Integral Magnetic Field Equation. 3. // SIAM J. Math. Analys. 1981. V. 12. No. 4. P. 536—540.
  22. Дякин В.В. Математические основы классической магнитостатики. Екатеринбург: РИО УрО РАН, 2016. 403 с.
  23. Раевский В.Я. О свойствах квазиэрмитовых операторов и их применении к исследованию операторов теории потенциала и основного уравнения электро- и магнитостатики / Препринт № 24/48(01). Екатеринбург: ИФМ УрО РАН, 2001.
  24. Раевский В.Я. Некоторые свойства операторов теории потенциала и их применение к исследованию основного уравнения электро- и магнитостатики // Теоретическая и математическая физика. 1994. Т. 3. № 100. С. 323—331.
  25. Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления. Т. 3. М.: Наука, 1966. 656 с.
  26. Прудников А.П., Брычков Ю.А., Маричев О.И. Интегралы и ряды. Т. 1. М.: Физматлит, 2003. 632 с.
  27. Дякин В.В., Кудряшова О.В., Раевский В.Я. Расчет напряженности магнитного поля внутри и вне бесконечного цилиндра, помещенного в произвольное внешнее поле // Дефектоскопия. 2024. № 3. С. 33—46.
  28. Пантелеев А.В., Летова Т.А. Методы оптимизации в примерах и задачах. М.: Высш. шк., 2002. 544 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».