ACOUSTIC EMISSION AND STRAIN GAUGE CONTROL OF DEFECTS DURING STATIC TESTS OF COMPOSITE SPRING OF AIRCRAFT CHASSIS
- Autores: Stepanova L.N.1, Laznenko A.S.2, Petrova E.S.2, Kazakova A.V.2, Ramazanov I.S.3, Chernova V.V.4
-
Afiliações:
- FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”,
- FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”
- FAI «Siberian Aeronautical Research Institute named after S. A. Chaplygin»
- The Siberian Transport University
- Edição: Nº 7 (2025)
- Páginas: 3-16
- Seção: Acoustic methods
- URL: https://bakhtiniada.ru/0130-3082/article/view/294887
- DOI: https://doi.org/10.31857/S0130308225070017
- ID: 294887
Citar
Resumo
The article presents the results of tests of the aircraft landing gear support spring made of Toray T800 prepreg and 30 KhGSA steel. The cases of its testing by acoustic emission, ultrasonic methods and strain gauge during the simulation of horizontal aircraft landing and during the simulation of landing with a side impact are considered. During the spring tests, strain gauge was used, tensile, compressive and torsional deformations were studied. The changes in the main informative parameters of acoustic emission signals (MARSE energy parameter, median frequency, structural and two-interval coefficients) were analyzed. The defect type was determined using a modified structural coefficient. This made it possible to increase the speed of information processing, since its decrease corresponded to the matrix destruction, and its increase corresponded to the fiber destruction. The location of acoustic emission signal sources corresponding to the structure area with the greatest relative deformations was obtained. It was noted that when simulating a horizontal landing of an aircraft, after removing the load, residual deformations were observed in the spring material
Palavras-chave
Sobre autores
Ludmila Stepanova
FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”,
Email: stepanova@stu.ru
ORCID ID: 0000-0003-1073-8394
Doctor of Technical Sciences, Professor, Chief Researcher of the Research Laboratory; Head of the Sector
Rússia, 630051 Novosibirsk, Polzunova st., 21Alexander Laznenko
FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”
Email: akustika2063@yandex.ru
Head of the Department of Fatigue and Static Strength of Aircraft Structures
Rússia, 630051 Novosibirsk, Polzunova st., 21Elena Petrova
FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”
Email: akustika2063@yandex.ru
Leading Engineer of the Department of Fatigue and Static Strength of Aircraft Structures
Rússia, 630051 Novosibirsk, Polzunova st., 21Anna Kazakova
FAI “Siberian Aeronautical Research Institute named after S. A. Chaplygin”
Email: akustika2063@yandex.ru
Leading Engineer of the Department of Fatigue and Static Strength of Aircraft Structures
Rússia, 630051 Novosibirsk, Polzunova st., 21Ilya Ramazanov
FAI «Siberian Aeronautical Research Institute named after S. A. Chaplygin»
Email: akustika2063@yandex.ru
Scopus Author ID: 143416
andidate of engineering, senior researcher of the sector of development of acoustic-emission and strain gauge systems
Rússia, 630051 Novosibirsk, Polzunova str., 21Valentina Chernova
The Siberian Transport University
Autor responsável pela correspondência
Email: akustika2063@yandex.ru
ORCID ID: 0000-0002-2701-1522
Código SPIN: 6035-3730
Scopus Author ID: 753280
candidate of engineering, lecturer of department
Rússia, 630049 Novosibirsk, D. Kovalchuk st., 191Bibliografia
- Sereznov A.N., Stepanova L.N., Kabanov S.I., Ramazanov I.S., Chernova V.V. Acoustic emission testing of aircraft materials and structures made of carbon fiber reinforced plastics. Novosibirsk: Nauka, 2024. 288 p.
- Sereznov A.N., Stepanova L.N., Laznenko A.S., Kabanov S.I., Kozhemyakin V.L., Chernova V.V. Static tests of wing box of composite aircraft wing using acoustic emission and strain gaging // Defectoskopiya. 2020. No. 8. P. 12—21.
- Skal’skii V.R., Stankevich E.M., Matviiv Y.Y. A study of the features of the macrofracturing of composite materials // Defectoskopiya. 2013. No. 10. P. 14—25.
- Prosser W.H., Allison S.G., Woodard S.E., Wincheski R.A., Cooper E.G., Price D., Hedley M., Prokopenko M., Scott D.A., Tessler A. Structural health management for future aerospace vehicles // NASA Technical Reports Server. 2004. https://ntrs.nasa.gov/citations/20040200975 [Electronic resource].
- Staszewski W.J., Mahzan S., Trayner R. Health monitoring of aerospace composites structures – Active and passive approach // Composites Science and Technology. 2009. V. 69. Is. 11—12. P. 1678—1685. doi: 10.1016/j.compscitech.2008.09.034
- Sereznov A.N., Stepanova L.N., Kabanov S.I., Chernova V.V., Kuznetsov A.B. Acoustic Emission Control of Defects in the Aircraft wing Attachment Zone in Flight // Kontrol’. Diagnostika. 2024. V. 27 (6). P. 18—27. [In Russian language]. doi: 10.14489/td.2024.06.pp.018-027
- Bashkov O.V., Protsenko A.E., Bryanskii A.A., Romashko R.V. Diagnostics of polymer composite materials and analysis of their production technology by using the method of acoustic emission // Mechanics of composite materials. 2017. V. 53. No. 4. P. 765—774. doi: 10.1007/s11029-017-9683-7
- Kanji Ono, Gallego A. Research and application of AE on advanced composite // J. of Acoustic Emission. 2012. V. 30. P. 180—229.
- Carboni M., Gianneo A., Giglio M. A low frequency lamb-waves based structural health monitoring of an aeronautical carbon fiber reinforced polymer composite // J. of Acoustic Emission. 2014. V. 32. P. 1—30.
- Lexmann M., Bueter A., Schwarzaupt O. Structural Health Monitoring of composite aerospace structures with Acoustic Emission // J. of Acoustic Emission. 2018. V. 35. P. 172—193. doi: 10.1016/B978-0-08-102291-7.00003-4
- Aljets D. Acoustic emission location in composite aircraft structures using modal analysis. University of Glamorgan. 2011. 163 p.
- Makhutov N.A., Sokolova A.G., Vasil’ev I.E., Chernov D.V., Skvortsov D.F., Bubnov M.A., Ivanov V.I. Monitoring composite fiber failure using acoustic emission system, vibration analyzer, and high-speed video recording // Defectoskopiya. 2020. No. 12. P. 14—23.
- Matvienko Y.G., Vasil’ev I.E., Chernov D.V., Pankov V.A. Acoustic-emission monitoring of airframe failure under cyclic loading // Defectoskopiya. 2019. No. 8. P. 24—33.
- Sereznov A.N., Stepanova L.N., Petrova E.S., Chernova V.V. Strength tests of butt joints of carbon fiber reinforced plastic aircraft spars using the acoustic emission method and tensometry // Konstrukcii iz kompozicionnyh materialov. 2021. No. 3. P. 49—56. doi: 10.52190/2073-2562_2021_3_49
- Kicheev V.E. Energy method for analyzing the mass of a spring chassis of a light aircraft // Proceedings of MAI. 2013. No. 70. [Electronic resource].
- Slavin A.V., Donetskiy K.I., Khrulkov A.V. Prospects for the use of polymer composite materials in aircraft structures in 2025-2035 (review) // Proceedings of VIAM. 2022. No. 11 (117). P. 81—92. [Electronic resource]. URL: http://www.viam-works.ru. doi: 10.18577/2307-6046-2022-0-11-81-92
- Lobanov D.S., Strungar E.M., Zubova E.M., Wildemann V.E. Studying the development of a technological defect in complex stressed construction cfrp using digital image correlation and acoustic emission methods // Defectoskopiya. 2019. No. 9. P. 3—10.
- Adamov A.A., Laptev M.Yu., Gorshkova E.G. Analysis of the international and russian federation national technical standards for mechanical tests of polymeric composite materials // Konstrukcii iz kompozicionnyh materialov. 2012. No. 3. P .72—77.
Arquivos suplementares
