УДК 620.179.16

ИСПОЛЬЗОВАНИЕ ОБЪЕМНЫХ ОТРАЖАТЕЛЕЙ ДЛЯ НАСТРОЙКИ ПАРАМЕТРОВ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ

© 2024 г. Л.Ю. Могильнер^{1,2,*}, Я.Г. Смородинский^{3,**}, В.В. Тишкин¹

¹Федеральное государственное автономное учреждение «Научно-учебный центр «Сварка и контроль» при МГТУ им. Н. Э. Баумана» (ФГАУ «НУЦСК при МГТУ им. Н.Э. Баумана»), Россия 105005 Москва, 2-я Бауманская ул., 5, стр. 1
²Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)», Россия 105005 Москва, Бауманская 2-я ул., 5, стр. 1
³Институт физики металлов имени М.Н. Михеева УрО РАН, Россия 620108 Екатеринбург, ул. Софьи Ковалевской, 18
Е-таil:*mogilner@mail.ru, mogilner@bmstu.ru
***sm@imp.uran.ru

Поступила в редакцию 28.08.2024; после доработки 18.09.2024 Принята к публикации 20.09.2024

В ультразвуковой дефектоскопии для настройки и проверки параметров оборудования традиционно используются боковые цилиндрические сверления. Другие объемные отражатели, например, вертикальные сверления или сферические поры, применяются редко. В настоящей статье отмечено, что объемные отражатели различных типов удобны для использования в качестве модели внутренних и выходящих на поверхность дефектов сварных швов. Тем более, что сверления различной ориентации просты в изготовлении. Долгое время ограничения применения сверлений для моделирования в ультразвуковой дефектоскопии были связаны с шумами, возникающими за счет дифракционных эффектов обегания цилиндрических полостей упругими волнами. Отмечено, что в настоящее время эти эффекты хорошо изучены. Их можно использовать для идентификации типа дефектов и измерения их размеров. В статье описаны результаты экспериментов по наблюдению рассеяния на цилиндрах и сферах продольных волн и поперечных волн с различной поляризацией, приведены характерные примеры проявления и использования указанных дифракционных эффектов. Также отмечена целесообразность использования не только сверлений, но и сферических пор. Эксперименты с рассеянием ультразвуковых волн на порах для наглядности выполнены на образцах из светопрозрачного стекла. Приведены сравнительные данные, показывающие, как дифракционные эффекты проявляются на различных объемных полостях. В том числе отмечено, что имеет место фокусировка сигналов, огибающих сферические поры. Отмечены ограничения на длительность импульсов ультразвуковых волн, при которых дифракционные сигналы можно использовать для повышения информативности при выявлении дефектов. Рекомендовано расширить применение боковых сверлений диаметром 2 мм в образцах для настройки чувствительности при ультразвуковом контроле эхометодом.

Ключевые слова: промышленность и инновации, ультразвуковая дефектоскопия, дифракционные эффекты, сварные швы, объемные дефекты, цилиндр, сфера, поры, фокусировка ультразвука.

VOLUMETRIC REFLECTORS USING FOR ADJUSTING ULTRASONIC TESTING PARAMETERS

© 2024 L.Yu. Mogilner^{1,2,*}, Ya.G. Smorodinsky^{3,**}, V.V. Tishkin¹

¹«Welding and Testing» of MSTU n.a. Bauman), Russia 105005 Moscow, Baumanskaya 2nd str., 5 building 1

²Bauman Moscow State Technical University, Russia 105005 Moscow, Baumanskaya 2nd str., 5 building 1

³M.N. Mikheev Institute of Metal Physics of Ural Branch of Russian Academy of Sciences, Russia 620108

Yekaterinburg, S. Kovalevskaya Str., 18

E-mail: *mogilner@mail.ru, mogilner@bmstu.ru

***sm@imp.uran.ru

In ultrasonic flaw detection, lateral cylindrical drillings are traditionally used to adjust and check the parameters of equipment. Other volumetric reflectors, such as vertical drillings or spherical pores, are rarely used. This article notes that such models of internal and surface defects of welded seams are convenient to use and easy to manufacture. For a long time, a limitation to the use of drillings for modeling in ultrasonic flaw detection was the use of these effects not only on defect models in the form of noise associated with the diffraction effects of elastic waves running around cylindrical cavities. It is noted that these effects are currently well studied and are used to identify the type of defects and measure their sizes. Based on the results of experiments on observing the scattering of longitudinal waves and transverse waves with different polarization on cylinders and spheres, typical examples of the manifestation and use of these diffraction effects are given. The expediency of using not only drillings, but also spherical pores is noted. Experiments of the ultrasonic waves scattering on pores are performed on transparent glass samples for clarity. Comparative data on the manifestation of diffraction effects on various volume cavities are presented. In particular, it is noted that there is a

focusing of signals enveloping spherical pores. Limitations on the duration of ultrasonic wave pulses are noted, at which diffraction signals can be used to increase the information content when detecting defects. It is recommended to expand the use of 2 mm diameter side drillings in samples to adjust sensitivity during ultrasonic testing using the echo method.

Keywords: industry and innovation, ultrasonic flaw detection, diffraction effects, welds, volume defects, cylinder, sphere, pores, ultrasound focusing.

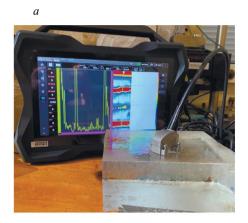
DOI: 10.31857/S0130308224100014

ИСТОРИЧЕСКАЯ СПРАВКА

Объемные искусственные отражатели в различных образцах — удобные модели дефектов. Например, если применять для настройки параметров ультразвукового контроля реальные поры в прозрачном стекле, то это дало бы возможность визуально контролировать форму и размеры отражателя, находящегося в объеме материала, и соотносить их с параметрами ультразвукового контроля. К сожалению, такой способ моделирования в ультразвуковой (УЗ) дефектоскопии практически не применяется.

Более традиционным является использование цилиндрических сверлений диаметром от 1 мм с различной ориентацией и глубиной [1]. Они имитируют объемные протяженные дефекты типа канальных пор и вертикальных свищей в сварных швах. Сверление легко изготовить как в лаборатории, так и в полевых условиях проведения работ по ультразвуковой (УЗ) дефектоскопии. Также относительно просто контролировать чистоту его поверхности и метрологические характеристики — диаметр, ориентацию оси. Боковые цилиндрические отражатели (БЦО) традиционно используются, например, в образцах типа СО-2 и V2 по стандартам [2, 3], а также при настройке параметров УЗ контроля дифракционно-временным методом (ТОГD). Однако в отечественной практике долгое время, по крайней мере до 2010 годов, существовали жесткие ограничения на настройку чувствительности УЗ контроля по БЦО. В частности, как известно, в образцах СО-2 для этой цели предназначено только сверление диаметром 6 мм с осью на глубине 44 мм от поверхности (15 мм от противоположной поверхности), но имеющиеся в этом же образце два сверления диаметром 2 мм на глубине 3 и 8 мм для настройки по амплитудному признаку не используются. Между тем, по этим сверлениям было бы удобно выполнять временную регулировку чувствительности при контроле сварных швов малой толщины, ориентировочно — до 10 мм.

Причина ограниченного использования сверлений малого диаметра заключается в том, что еще в 60-е годы 20-го века на основании строгого расчета рассеяния поперечной волны на цилиндрической полости было установлено, что амплитуда сигнала, рассеянного на БЦО, может осциллировать с ростом его диаметра [4, 5]. В диапазоне диаметров БЦО от 0,1 до 1 мм на частоте 5 МГц или в диапазоне от 0,5 до 5 мм на частоте 1 МГц размах этих осцилляций может составлять 6 дБ, постепенно уменьшаясь с ростом диаметра сверления. К сожалению, в те годы причина появления осцилляций не была проанализирована. Сегодня известно, что они возникают, если происходит интерференция волн, зеркально отраженных от поверхности цилиндрической полости, и дифрагированных волн, обегающих ее. Амплитуда сигнала, порождаемого каждой из этих волн, изменяется с ростом диаметра цилиндра монотонно: растет для первой и убывает для второй. Однако эти сигналы приходят на приемник со сдвигом фаз, который меняется при изменении диаметра цилиндра. Поэтому в случае, если приемник одновременно регистрирует поступление обоих сигналов, то действительно могут возникать осцилляции амплитуды результирующего сигнала при монотонном изменении диаметра цилиндра. Если же излучаемый ультразвуковой импульс настолько короткий, что на приемнике указанные сигналы разрешаются во времени, то они регистрируются независимо друг от друга, и каждый из них можно в полной мере анализировать и использовать по отдельности.


В настоящее время эти особенности формирования рассеяния упругих волн на цилиндрической полости хорошо известны. В частности, раздельный прием сигналов, рассеянных на разных участках дефекта, используется в дифракционных методах УЗ контроля [6—9]. Однако даже один из основателей теории УЗ дефектоскопии профессор Игорь Николаевич Ермолов до конца своей активной деятельности сомневался в наличии или отсутствии осцилляций, а главное — в причинах их появления (см. «Дефектоскопические истории» в [10]). Обсуждение вопроса об «осцилляциях» и раздельном приеме сигналов по-прежнему периодически поднимается в специальной литературе (см., например, [11—13]).

В вопросе о сигналах, дифрагированных на объемных отражателях, действительно по-прежнему есть предмет для обсуждения, но не в связи с самим фактом наличия или отсутствии осцилляций амплитуды, а в связи с ограничениями в использовании этих сигналов для определения параметров дефектов. Например, это относится к упомянутым сверлениям диаметром 2 мм в СО-2 в стандарте [2], а также к рекомендациям по применению БЦО в ТОFD

[8] и к применению объемных отражателей для настройки в эхометоде [14]. Далее поясним это на нескольких примерах.

СФЕРИЧЕСКИЕ ПОРЫ

Вначале рассмотрим пример рассеяния на сферических порах, который не очень часто встречается в литературе по ультразвуковой дефектоскопии. На рис. 1 иллюстрируется прозвучивание образца из оптического стекла марки К108 толщиной 61,5 мм с четырьмя газовыми порами диаметром 2,0; 1,0; 1,0; 0,8 мм. Диаметры пор оценены визуально с погрешностью ±0,1 мм. Рассмотренные поры имеют естественное происхождение. Они возникли случайным образом при изготовлении стекла, предназначенного для оптических приборов. Образец, описанный на рис. 1, был забракован по результатам визуального контроля для использования по основному назначению, однако оказался очень полезным в целях проведения экспериментов, описанных в настоящей статье.

б

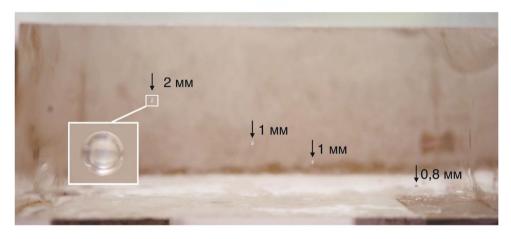


Рис. 1. Блок толщиной 61,5 мм из стекла с порами: общий вид при измерениях (a); фотография пор с торца образца (δ) .

Для выполнения измерений использовался ультразвуковой дефектоскоп общего назначения в комплекте с совмещенными пьезоэлектрическими преобразователями (ПЭП): прямыми на продольные волны, прямыми и наклонными — на поперечные. В последних двух случаях результаты однотипные, поэтому ниже на рис. 2 приведены А-сканы сигналов из образца, полученных только прямыми ПЭП.

Примечание. На рис. 2 и 3 в конце развертки также показаны донные сигналы. Их амплитуда существенно превышает амплитуду сигналов от пор: на 35 дБ и более для продольной волны, на 40 дБ и более — для поперечной. Поэтому для выявления пор потребовалось завышать чувствительность, и при использовании поперечных волн на А-сканах могли появляться различные трансформированные сигналы. Эти сигналы удалены с рис. 3 для упрощения представления и анализа информации.

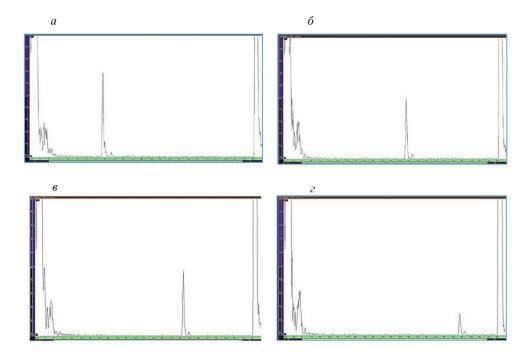


Рис. 2. А-сканы при выявлении в блоке из стекла продольными волнами пор диаметром: 2 мм (a); 1,0 мм (δ); 1,0 мм (ϵ); 0,8 мм (ϵ).

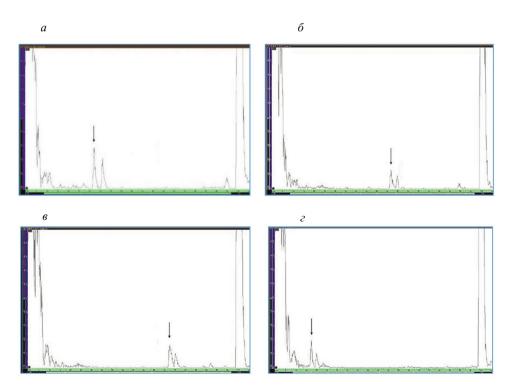


Рис. 3. А-сканы при выявлении в блоке из стекла поперечными волнами пор диаметром: 2 мм (a); 1,0 мм (b); 1,0 мм (b); 0,8 мм (a); 0,8 мм (b); 0,9 мм (b); 0,9

Измеренная скорость продольных c_L и поперечных c_S волн в использованном образце из стекла составила $5,72\times10^3$ и $3,67\times10^3$ м/с соответственно, т.е. c_S / c_L = 0,64. Исходя из этого, с учетом времени приема сигналов, расположения ПЭП и динамики изменения сигналов при сканировании по поверхности образа сделан однозначный вывод о том, что это — сигналы от пор. Необходимо отметить, что при прозвучивании поперечной волной в направлении стрелки на рис. 16, пора диаметром 0,8 мм практически не выявлялась — сигналы затухали при рас-

Таблица 1 Сравнение амплитуд и времени приема сигналов, различного при рассеянии на сфере продольных и поперечных волн

Диаметр поры D , мм		2,0	1,0	1,0	0,8			
Продольная волна, частота 10 МГц								
Оценка отношения амплитуд, $A_{\rm диф}/A_{\rm 3ep}$	Эксперимент	0,04	0,07	0,08	0,08			
	Расчет	0,1—0,05	0,1—0,05	0,1—0,05	0,1—0,05			
Оценка задержки Δt_L , мкс	Эксперимент	0,7	0,6	0,5	0,5			
	Расчет	0,9	0,5	0,5	0.4			
Поперечная волна, частота 5 МГц								
Оценка отношения амплитуд, $A_{\rm диф}/A_{\rm 3ep}$	Эксперимент	0,6	0,6	0,6	0,6			
	Расчет	0,35—0,6	0,35—0,6	0,35—0,6	0,35—0,6			
Оценка задержки Δt_{S^*} мкс	Эксперимент	1,3	1,1	1,0	0,8			
	Расчет	1,4	0,8	0,8	0,4			
Поперечная волна, частота 2,25 МГц								
Оценка отношения амплитуд, $A_{\rm диф}/A_{\rm 3ep}$	Эксперимент	0,5	0,6	0,6	_			
	Расчет	0,35—0,6	0,35—0,6	0,35—0,6	0,35—0,6			
Оценка задержки Δt_{S} , мкс	Эксперимент	1,2	1,0	0,7	_			
	Расчет	1,4	0,8	0,8				

стоянии 50,5 мм от поверхности образца. Поэтому на рис. 3г приведен А-скан сигнала, полученный от этой поры с расстояния 11,0 мм от ближней к ней поверхности образца, т.е. против стрелки на рис. 16. В результате, сигнал от этой поры на развертке находится ближе к зондирующему импульсу, чем сигналы от других пор (см. стрелки на рис. 3).

Результаты получены на частотах $10~\mathrm{MF}$ ц для продольной волны, $5~\mathrm{MF}$ ц — для поперечной. При этом волновые размеры пор для волн разного типа близки (см. отношение c_S / c_L), что облегчает сравнение результатов. Дополнительно выполнены измерения поперечной волной на частоте $2,25~\mathrm{MF}$ ц. Результаты в целом — аналогичные, однако здесь не приведены, т.к. на этой частоте уровень помех превышал уровень сигналов от поры минимального диаметра $0,8~\mathrm{mm}$.

На рис. 2 и рис. 3 видно, что все A-сканы от всех пор — двойные: вслед за более или менее мощным первым сигналом с амплитудой $A_{\rm 3ep}$ фиксируется второй с меньшей амплитудой $A_{\rm диф}$. В табл. 1 приведены измеренные величины отношения амплитуд сигналов $A_{\rm диф}/A_{\rm 3ep}$ и интервалы времени между ними $\Delta t = t_{\rm диф} - t_{\rm 3ep}$, при этом результаты округлены с учетом фактической точности измерений амплитуд в процентах от высоты экрана и временных интервалов — до 0,1 мкс. Видно, что в пределах точности измерений отношение амплитуд каждой пары сигналов, принимаемых от одной поры, мало изменяется при изменении диаметра поры, а запаздывание второго сигнала относительно первого примерно пропорционально диаметру (радиусу) поры D=2b.

Объяснение такой структуры откликов от пор заключается в том, что в каждой паре сигналов первый создается волной, зеркально отраженной от поверхности поры, а второй — дифрагированной волной, обогнувшей пору. Механизм возбуждения дифрагированных сигналов достаточно хорошо известен. В теоретическом плане он изучен, например, в работах [15, 16], а в приложении к ультразвуковой дефектоскопии — в [17, 18]. Этот механизм аналогичен возбуждению дифрагированных сигналов при рассеянии на цилиндрической полости (сверлении), детально рассмотренный в работах [6, 17-20], а также с учетом возможностей современной аппаратуры — в [9]. Установлено, что волна, касающаяся гладкой вогнутой в материал поверхность полости, возбуждает на этой поверхности неоднородные волны, которые, распространяясь вдоль полости, в каждой ее точке переизлучают в объем. Именно это переизлучение создает сигналы, огибающие объемные полости. Показано, что в упругих средах на практике можно обнаружить такие неоднородные волны трех типов. Они могут распространяться со скоростями, несколько меньшими, чем скорость продольной и поперечной объемных волн, а также со скоростью, несколько меньше скорости волны Релея на плоской поверхности. Соответственно, такие неоднородные волны можно назвать квазипродольной, квазипоперечной и квазирелеевской. В связи с переизлучением в объем эти волны быстро затухают и могут быть обнаружены только при малых диаметрах полостей. Задержка дифрагированных сигналов, огибающих

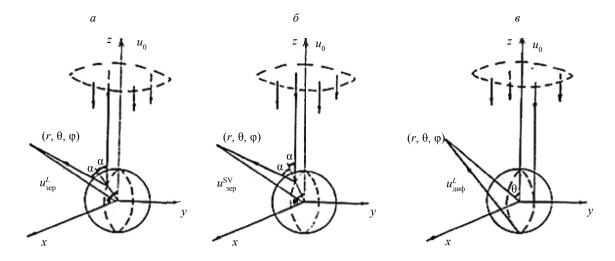


Рис. 4. К рассеянию продольной волны с амплитудой смещения u_0 на сферической полости: отражение $u^L_{\text{зер}}$ и трансформация $u^{\text{SV}}_{\text{зер}}$ по законам геометрической акустики (a,δ) ; огибание $u^L_{\text{диф}}$ полости (e).

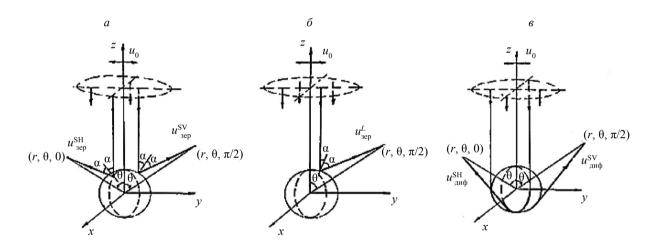


Рис. 5. К рассеянию линейно поляризованной поперечной волны u_0 на сферической полости: отражение $u_{\text{зер}}^{\text{SV}}, u_{\text{зер}}^{\text{SH}}$ трансформация $u_{\text{зер}}^{L}$ по законам геометрической акустики (a, δ) ; огибание полости $u_{\text{лиф}}^{\text{SV}} = u_{R}^{\text{SV}}, u_{\text{лиф}}^{\text{SH}}(\theta)$.

цилиндр и сферу, от зеркально отраженных практически одинакова при одинаковых диаметрах этих полостей. Однако есть существенные особенности в формировании амплитуд дифрагированных сигналов, которые удобно пояснить графически. Если падающая волна — продольная (как на рис. 4), то рассеяние на сфере симметрично по азимутальному углу ф в сферической системе координат (r, θ, ϕ) , т.е. амплитуды принятых сигналов зависят только от переменных r, θ, а задача рассеяния — двухмерная. Если же падающая волна — линейно поляризованная поперечная (как на рис. 5), то задача становится трехмерной: результат рассеяния зависит от положения точки наблюдения. В плоскость поляризации падающей волны vOz она рассеивается как вертикально поляризованная (SV), а в перпендикулярную плоскость xOz — как горизонтально поляризованная (SH). Для сравнения: очевидно, что при рассеянии продольной волны на цилиндре (сверлении) симметрия по углу отсутствует. Еще одно существенное отличие в рассеянии на сфере и на цилиндре заключается в том, что при совмещенной схеме на поверхности сферы возникает «светящаяся» линия, со всех точек которой сигналы на приемник приходят одновременно (рис. 6). При этом на приемнике происходит фокусировка сигналов, одновременно поступающих с этой линии, в результате которой при совмещенной схеме излучения—приема отношение амплитуд огибающего сферу сигнала к амплитуде зеркально отраженного должно быть значительно больше, чем при рассеянии на цилиндре. Дополнительные комментарии к отдельным частям рис. 4 — рис. 6 можно найти также в [17, 18, 21].

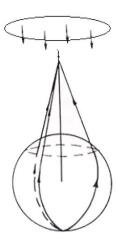


Рис. 6. «Светящаяся» линия на сферическом отражателе при рассеянии «назад».

Теперь вернемся к табл. 1. Аналогично оценке, сделанной для цилиндрической полости в [9], при совмещенной схеме, т.е. при $\theta = 0$, для случаев озвучивания сферы продольной и поперечной волнами задержку Δt_L и Δt_S сигналов, огибающих сферу, от зеркально отраженных, соответственно, можно оценить по формулам:

$$\Delta t_L = \frac{D}{c_L} \left\{ 1 + \frac{\pi}{2} \right\}, \quad \Delta t_S = D \frac{1}{c_S} \left\{ 1 + \frac{\pi}{2} \frac{c_S}{c_R} \right\},$$
 (1)

где c_R — скорость волны Релея. Принимая традиционное соотношение c_R/c_S = 0,93, получим для $\Delta t_{L,S}$ оценки, приведенные в табл. 1. Оценки отношения амплитуд, приведенные в этой таблице, выполнены согласно расчетным формулам из [17, 18, 21]. Учитывая фактические погрешности измерений амплитуд дифрагированных сигналов, выполненных для продольной волны практически на уровне шумов, можно видеть, что наблюдаемые в экспериментах результаты удовлетворительно подтверждают расчеты для рассеяния поперечной волны и, как минимум, качественно — для рассеяния продольной.

БОКОВОЙ ЦИЛИНДРИЧЕСКИЙ ОТРАЖАТЕЛЬ

Поскольку выше приводились примеры сравнения рассеяния на сферической и цилиндрической полостях, эту тему целесообразно продолжить. На рис. 7 приведен пример озвучивания БЦО диаметром 3; 3,5; 4,5; 5 мм (слева направо) на глубине 30 от верхней поверхности образца, а на рис. 8 — А-сканы сигналов от этих БЦО, полученные поперечной волной совмещенным

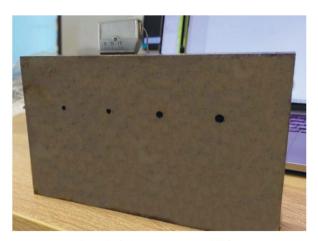


Рис. 7. Образец с серией БЦО.

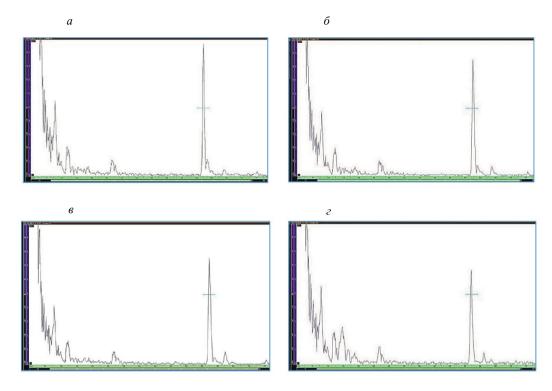


Рис. 8. А-сканы при выявлении в стали поперечными волнами БЦО диаметром: 5 мм (a); 4,5 мм (δ) ; 3,5 мм (ϵ) ; 3 мм (ϵ) . Чувствительность настроена как на рис. 3.

ПЭП с углом ввода 40° на частоте 5 МГц. В отличие от предыдущего образца, в котором поры находились на разных глубинах, в данном случае очень просто выполнить БЦО с осями на одной глубине, чтобы сделать максимально схожими условия рассеяния на разных БЦО.

Значения скоростей волн для стали приняты: $c_S = 3,26 \times 10^3$ м/с, $c_R/c_S = 0,93$. Результаты измерений приведены в табл. 2 в сравнении с оценками, полученными расчетным путем согласно [6].

Диаметр БЦО	5,0	4,5	3,5	3,0						
Поперечная волна, частота 5 МГц										
Амплитуда A_{3ep} ,	97	93	85	78						
Время t_{3ep} , мкс		34,2	35,0	35,7	35,9					
Амплитуда $A_{{}_{\mathrm{Л}\mathrm{u}\mathrm{\psi}}},\%$ экрана		5,6	6,8	8,5	9,0					
Время $t_{\text{диф}}$, мкс		38,4	38,8	38,8	38,4					
Оценка отношения амплитуд, $A_{\rm ди\varphi}/A_{\rm 3ep}$	Эксперимент	0,06	0,07	0,10	0,11					
	Расчет	0,05-0,07	0,050,08	0,07-0,10	0,1—0,2					
Оценка задержки Δt , мкс	Эксперимент	4,2	3,8	3,1	2,5					
	Расчет	4,1	3,7	2,9	2,5					

В данном случае можно говорить уже не о качественном, а о количественном совпадении результатов расчета и экспериментов. Именно поэтому здесь приведены результаты измерений на цилиндрах сравнительно больших диаметров: сигналы лучше разрешаются, а амплитуда сигналов, зеркально отраженных от цилиндра, больше, чем от сфер диаметром 0,8—2 мм.

ВЛИЯНИЕ ПОЛЯРИЗАЦИИ ВОЛНЫ НА ЭФФЕКТ ОБЕГАНИЯ ОБЪЕМНОГО ОТРАЖАТЕЛЯ

Приведем теперь пример того, как влияет поляризация исходной поперечной волны на результаты рассеяния на сфере и БЦО. Проще всего это продемонстрировать при выявлении поры и БЦО одинакового диаметра при нормальном вводе линейно поляризованной поперечной волны совмещенным ПЭП. Измерения проведены на поре диаметром 2 мм на глубине 19 мм в образце из стекла и БЦО диаметром 2 мм на глубине 15 мм в образце из стали. На рис. 9 показаны А-сканы принимаемых сигналов.

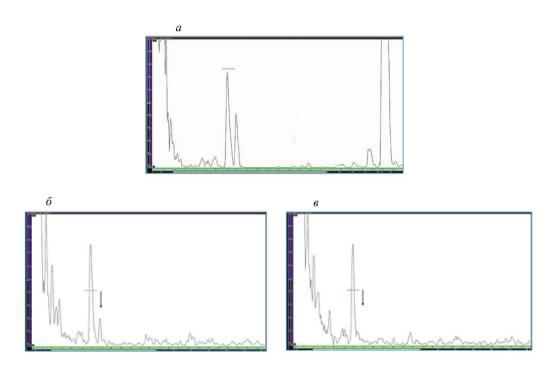


Рис. 9. А-сканы при анализе рассеяния линейно поляризованной поперечной волны на сфере и БЦО: рассеяние на сфере не зависит от ориентации вектора поляризации (a); рассеяние на БЦО волны с SV-поляризацией (δ); рассеяние на БЦО волны с SH-поляризацией (a). А-сканы на (a) и (a) нормированы одинаково, но независимо от A-скана на (a).

Как указывалось выше, результат рассеяния продольной волны на сферической полости симметричен относительно азимутального угла ф (см. рис. 2), а в случае рассеяния поперечной волны (как на рис. 3) необходимо учитывать направление вектора ее поляризации. Однако есть одно исключение. Если выявление сферы производится по совмещенной схеме, то очевидно, что при вращении источника (он же — приемник) поляризованной поперечной волны вокруг вертикальной оси на рис. З условия озвучивания сферы не меняются при поворотах преобразователя. Таким образом, не меняется и характер рассеяния волн. Поэтому в однородной изотропной упругой среде при рассеянии поперечной волны пара сигналов, показанная на рис. 9a, не изменяется при вращении совмещенного преобразователя относительно вертикальной оси на рис. 3. Иная ситуация имеет место при озвучивании БЦО. Если исходная поперечная волна поляризована перпендикулярно поверхности (оси) БЦО, то она рассеивается как вертикально поляризованная относительно этой поверхности (SV-волна). Зеркальное отражение происходит с коэффициентом отражения, практически равным единице. При этом на поверхности БЦО формируется скользящая вдоль нее квазирелеевская волна, которая переизлучает в объем в сторону приемника. Результат показан на рис. 9б. Он аналогичен ранее приведенным А-сканам на рис. 8. Приемник регистрирует зеркальное отражение и огибание полости (последнее отмечено стрелкой). Разница амплитуд и времени приема зеркально отраженных и огибающих полость сигналов рассчитывается как для данных табл. 1 и 2.

Теперь развернем совмещенный преобразователь на 90° относительно вертикальной оси. В этом случае плоскость поляризации исходной поперечной волны станет параллельной оси цилиндра, т.е. в этом случае волна уже горизонтально поляризована (SH-волна) относительно поверхности полости. В точке зеркального отражения поверхность полости локально пло-

ская. Соответственно, коэффициент отражения этой волны не изменится, так же, как и амплитуда зеркально отраженного сигнала. Однако квазирелеевская волна при SH-поляризации не возникает, а другие типы неоднородных волн, которые могут скользить вдоль цилиндрической поверхности, быстро затухают. Поэтому при ориентации вектора поляризации поперечной волны вдоль оси БЦО дифракционное огибание полости не наблюдается — соответствующий участок отмечен стрелкой на рис. 96.

ДИФРАКЦИОННЫЕ ЭФФЕКТЫ ПРИ РАЗДЕЛЬНОЙ СХЕМЕ ИЗЛУЧЕНИЯ—ПРИЕМА УЛЬТРАЗВУКОВЫХ ВОЛН

Выше рассматривались только совмещенные схемы выявления сферических и цилиндрических полостей. Не меньший интерес представляют и дифракционные эффекты, возникающие при раздельном излучении—приеме ультразвуковых волн. Рассмотрим, согласно [18], пример эксперимента, в котором также демонстрируется различие в рассеянии на цилиндрических и сферических полостях. Пусть излучение и прием поперечных волн выполняется обычными наклонными ПЭП по схеме, показанной на рис. 10. В образце из алюминиевого сплава использовались: БЦО в качестве модели цилиндрической полости, сверление со сферическим дном в качестве модели сферы. Диаметры сверлений — 6 мм. Скорость поперечных волн 3,1×10³ м/с. Результаты измерений приведены в табл. 3.

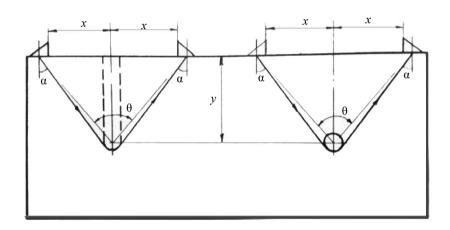


Рис. 10. Схема измерений для сравнения дифракции на сферической поверхности и БЦО.

В табл. 3 для расчета отношения амплитуд сигналов, огибающих поверхности полостей в указанных условиях, согласно [18], использована формула:

$$\frac{\left|A_{RC\varphi}^{SV}\right|}{\left|A_{RLL_{\Pi}}^{SV}\right|} = 0.84\sqrt{\frac{\pi b}{r\sin\theta}}\exp\left\{\left(\theta - \pi\right)\left(\operatorname{Im}\nu_{RC\varphi} - \operatorname{Im}\nu_{RLL_{\Pi}}\right)\right\}. \tag{2}$$

При этом имеется ввиду, что из всех волн, огибающих полости, вклад в принимаемый сигнал дают только квазирелеевские волны, т.е. $A_{\text{диф}C\varphi}^{\text{SV}} = A_{\text{RC}\varphi}^{\text{SV}}, \ A_{\text{диф}Цл}^{\text{SV}} = A_{\text{RЦ}_{1}}^{\text{SV}}.$ Здесь b — радиус объемного дефекта, расстояние r задается по формуле $r = \sqrt{x^2 + y^2}$,

Здесь b — радиус объемного дефекта, расстояние r задается по формуле $r = \sqrt{x^2 + y^2}$, величины x, y, θ показаны на рис. 10, а символами $\operatorname{Im} v_{RC\varphi}$ и $\operatorname{Im} v_{RU_{\pi}}$ обозначены коэффициенты затухания квазирелеевских волн при распространении вдоль поверхности сферы и цилиндра, соответственно. В таком виде коэффициенты затухания записаны для того, чтобы подчеркнуть, что неоднородные волны, скользящие вдоль поверхности полостей, задаются комплексными волновыми числами v_R . Их действительная часть $\operatorname{Re} v_R$ определяет фазовые скорости волн, скользящих вдоль полости. Расчетное значение этой величины для диапазона волновых размеров полостей, представляющих наибольший интерес для контроля качества сварных швов, приведено согласно [18] на рис. 11a. Из этого графика следует, что вдоль поверхностей БЦО и сферической поры квазирелеевские волны распространяются с практически одинаковой скоростью. Поэтому при сравнении времени распространение этих волн и

Угол ввода α, град		70	59	51	
Разворот ПЭП θ, град		140	120	100	
Расстояние между точками ввода, $2r = 2\sqrt{x^2 + y^2}$, мм		120	100	80	
$rac{A_{R{ m C}\Phi}}{A_{R{ m L}\pi}},\;{ m д}{ m E}$	Эксперимент	-10	_9	-6	
	Расчет	-9,5	-10,7	-10,6	

Таблица 3 Сравнение амплитуд сигналов, огибающих БЦО и сферическую поверхность

вычислении времени приема сигналов, огибающих объемные отражатели, во второй формуле в (1) можно пользоваться одними и теми же значениями скоростей неоднородных волн.

На рис. 116 показана зависимость мнимой часть Im v_R комплексных волновых чисел, т.е. коэффициента затухания квазирелеевских волн при их распространении вдоль поверхности полости, от волнового размера полости. Видно, что эта величина для сферической поверхности существенно превышает аналогичную для цилиндра. Соответственно, неоднородные волны при распространении вдоль сферической полости затухают значительно сильнее, чем при распространении вдоль цилиндра. На это указывалось в предыдущих разделах настоящей статьи.

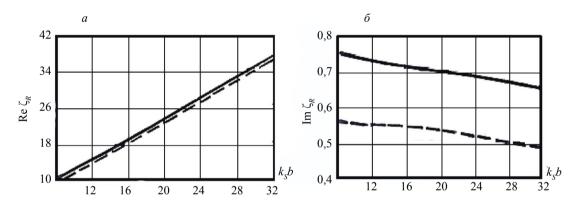


Рис. 11. Действительная и мнимая части комплексного волнового числа скользящих волн релеевского типа на сфере (сплошные линии) и цилиндре (штриховая линия): действительная часть (a); мнимая часть (b).

Как видно из табл. 3, результаты расчетов и экспериментов совпадают: при малых углах ввода — как минимум качественно, при достаточно больших углах — количественно.

ЗАКЛЮЧЕНИЕ

Рассеяние упругих волн на сферических полостях (порах) в упругой среде происходит по механизму, аналогичному рассеянию на цилиндрических сверлениях. В зависимости от типа и поляризации исходных волн можно наблюдать как зеркальное отражение волн, так и огибание волнами этих полостей. Однако коэффициенты затухания волн, скользящих вдоль поверхности сферической полости, больше, чем при огибании цилиндрических сверлений. В результате отношение амплитуд огибающих и зеркально отраженных сигналов на сфере меньше, т.е. огибающие сигналы значительно слабее, чем на цилиндре. Исключение составляет случай выявления объемных дефектов по совмещенной схеме. Вследствие фокусировки на приемнике сигналов, переизлучаемых со «светящейся» линии на поверхности сферы огибающими ее волнами, амплитуда дифрагированных на сфере сигналов существенно увеличивается. В результате разница амплитуд дифрагированных и зеркально отраженных от сферы сигналов может составить всего несколько депибел.

При использовании объемных полостей (сверлений, сферических пор) для настройки параметров ультразвукового контроля следует уделять внимание соотношению длительности импульсов и диаметров полостей в образцах и сварных швах. Если используются достаточно короткие зондирующие импульсы длительностью 2-3 периода (на центральной частоте), такие, что зеркально отраженные сигналы разрешаются во времени от огибающих объемные

дефекты, то амплитуду и время приема зеркальных отражений можно использовать для настройки чувствительности и диапазона развертки, а разницу времени приема этих сигналов — для проверки разрешающей способности оборудования. Например, это имеет место для БЦО диаметром 2 мм на глубине 3 и 8 мм в образце CO-2 по ГОСТ Р 55724—2013 при использовании частоты 5 МГц и более. При этом зеркально отраженные от этих БЦО сигналы разрешаются во времени от огибающих. Фактически, в указанном стандарте это уже допускается на образце CO-3P.

При озвучивании объемных полостей поперечной волной наличие или отсутствие сигналов, огибающих эти полости, можно использовать в качестве информативного признака для идентификации типа объемного дефектов, т.е. для получения информативного признака, отличающего протяженные объемные дефекты типа свищей или канальных пор от локальных объемных дефектов типа сферических пор.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Ермолов И.Н.* Теория и практика ультразвукового контроля. М.: Машиностроение, 1981. С. 240.
- 2. ГОСТ Р 55724—2013. Контроль неразрушающий. Соединения сварные. Методы ультразвуковые
- 3. ISO 7963. Non-destructive testing Ultrasonic examination Specification for calibration block No. 2.
- 4. *Тютекин В.В.* Рассеяние плоских волн цилиндрической полостью в изотропной упругой среде // Акустический журнал. 1959. Т. 5. № 1. С. 106—110.
- 5. *Голубев А.С.* Отражение плоских волн от цилиндрического дефекта // Акустический журнал. 1961. Т. 7. Вып. 2. С. 174—180.
- 6. *Алешин Н.П., Могильнер Л.Ю*. Анализ упругого поля ультразвуковых волн, рассеянных на цилиндрической полости // Дефектоскопия. 1982. № 12. С. 18—30.
- 7. *Могильнер Л.Ю*. Применение цилиндрического отражателя для настройки чувствительности при ультразвуковом контроле // Дефектоскопия. 2018. № 7. С. 27—36.
- 8. Гинзел Э. ТОГО. Дифракционно-временной метод ультразвуковой дефектоскопии. М.: ДПК Пресс, 2021. С. 312. (Ed. Ginzel. Ultrasonic Time of Flight Diffraction. Waterloo, Ontario, Canada: Eclipse Scientific, 2013. 249 р.).
- 9. *Могильнер Л.Ю.*, *Смородинский Я.Г.* Ультразвуковой контроль: применение цилиндрического сверления для настройки и поверки оборудования // Дефектоскопия. 2018. № 9. С. 14—20.
 - 10. Ермолов И.Н. Жизнь и дефектоскопические истории. М.: Спектр, 2011. 120 с.
- 11. *Мелешко Н.В.*, *Петров А.А.* Зарубка и боковое цилиндрическое сверления. Режим доступа: https://www.shearwave.ru, запись от 11.08.2013. Дата обращения 26.07.2024.
- 12. *Базулин Е.Г.*, *Вопилкин А.Х.*, *Сухоруков Н.И.*, *Тихонов Д.С*. Анализ фазы ЦФА-изображений с целью определения типа обнаруженного отражателя // Дефектоскопия. 2019. № 7. С. 20—29.
- 13. Данилов В.Н. О возможности оценки радиуса цилиндрического отражателя по времени запаздывания импульса волны обегания по отношению к зеркально отраженному импульсу поперечной волны при ультразвуковом контроле металла наклонным преобразователем // Контроль. Диагностика. 2024. Т. 27. № 3. С. 14—22.
- 14. *Могильнер Л.Ю.*, *Сясько В.А.*, *Шихов А.И*. Моделирование дефектов в ультразвуковой дефектоскопии. Состояние и перспективы // Дефектоскопия. 2024. № 5. С. 13—35.
- 15. Яворская И.М. Коротковолновая асимптотика дифракционного поля на сфере при падении плоских поперечных волн // Прикладная математика и механика. 1965. Т. 29. № 6. С. 1023—1034.
- 16. *Miklowitz J.* The theory of elastic waves and waveguides. Amsterdam—New York—Oxford: North-Holland Publishing Company, 1978. 618 p.
- 17. Алешин Н.П. Разработка теории, создание и внедрение методов и средств ультразвуковой дефектоскопии сварных соединений строительных конструкций / Автореферат дисс. д.т.н. Диссертация на соискание ученой степени доктора технических наук. М.: МВТУ им. Н.Э. Баумана, 1983. 32 с.
- 18. *Могильнер Л.Ю*. Рассеяние ультразвуковых колебаний объемными моделями дефектов и разработка методики и средств неразрушающего контроля сварных узлов строительных структурных покрытий: диссертация на соискание ученой степени кандидата технических наук / Автореферат диссертации к.т.н. М.: МВТУ им. Н.Э. Баумана, 1983. 16 с.
- 19. *Яворская И.М.* Дифракция плоской продольной волны на круглом цилиндре // Доклады АН СССР. 1964. Т. 158. № 6. С. 1287—1290.
- 20. Яворская И.М. Дифракция плоских стационарных упругих волн на гладких выпуклых цилиндрах // Прикладная математика и механика. 1965. Т. 29. № 3. С. 493—508.
- 21. Алешин Н.П., Баранов В.Ю., Могильнер Л.Ю., Яровой А.А. Повышение выявляемости объемных дефектов // Дефектоскопия. 1985. № 7. С. 24—30.

REFERENCES

- 1. Ermolov I.N. Theory and practice of ultrasonic testing. M.: Mashinostroenie, 1981. P. 240.
- 2. GOST R 55724—2013. Non-destructive testing. Welded joints. Ultrasonic methods.
- 3. ISO 7963. Non-destructive testing Ultrasonic examination Specification for calibration block
- 4. Tyutekin V.V. Scattering of plane waves by a cylindrical cavity in an isotropic elastic medium // Acoustic journal. 1959. V. 5. No. 1. P. 106—110.
- 5. Golubev A.S. Reflection of plane waves from a cylindrical defect // Acoustic journal. 1961. V. 7. Is. 2. P. 174—180.
- 6. Aleshin N.P., Mogilner L.Yu. Analysis of the elastic field of ultrasonic waves scattered by a cylindrical cavity // Defectoscopiya. 1982. No. 12. P. 18—30.
- 7. Mogilner L. Yu. Application of a cylindrical reflector for adjusting sensitivity in ultrasonic testing // Russian Journal of Nondestructive Testing. 2018. No. 7. P. 27—36.
- 8. Ginzel E. Ultrasonic Time of Flight Diffraction Moscow: DPK Press, 2021. P. 312. (Ed. Ginzel. Ultrasonic Time of Flight Diffraction. Waterloo, Ontario, Canada: Eclipse Scientific, 2013. 249 p.).
- 9. Mogilner L.Yu., Smorodinsky Ya.G. Ultrasonic testing: application of cylindrical drilling for equipment setup and testing // Defectoscopiya. 2018. No. 9. P. 14—20.
 - 10. Ermolov I.N. Life and flaw detection stories. Moscow: Spektr, 2011. 120 p.
- 11. Meleshko N.V., Petrov A.A. Notch and lateral cylindrical drilling. Access mode: https://www. shearwave.ru, entry from 11.08.2013. Date of access 26.07.2024.
- 12. Bazulin E.G., Vopilkin A.Kh., Sukhorukov N.I., Tikhonov D.S. Phase analysis of digital facial image analysis to determine the type of detected reflector // Defectoscopiya. 2019. No. 7. P. 20—29.
- 13. Danilov V.N. On the Possibility of Estimating the Radius of a Cylindrical Reflector Based on the Time Delay of the Run-around Wave Pulse with Respect to the Specularly Reflected Transverse Wave Pulse in Ultrasonic Testing of Metal with an Inclined-Beam Transducer // Testing. Diagnostics. 2024. V. 27. No. 3. P. 14—22.
- 14. Mogilner L.Yu., Syasko V.A., Shikhov A.I. Modeling Defects in Ultrasonic Flaw Detection. Status and Prospects // Defectoscopiya. 2024. No. 5. P. 13—35.
- 15. Yavorskaya I.M. Short-Wave Asymptotics of the Diffraction Field on a Sphere with Incident Plane Transverse Waves // Applied Mathematics and Mechanics. 1965. V. 29. No. 6. P. 1023—1034.

 16. *Miklowitz J.* The theory of elastic waves and waveguides. Amsterdam—New York—Oxford:
- North-Holland Publishing Company, 1978. 618 p.
- 17. Aleshin N.P. Development of the theory, creation and implementation of methods and means of ultrasonic flaw detection of welded joints of building structures Abstract of dissertation. Doctor of Engineering Sciences / PhD Abstract. Engineering Sciences. Moscow: Bauman Moscow State Technical University, 1983. 32 p.
- 18. Mogilner L. Yu. Scattering of ultrasonic vibrations by volumetric models of defects and development of methods and means of non-destructive testing of welded joints of building structural coatings / PhD Abstract. Engineering Sciences. Moscow: Bauman Moscow State Technical University, 1983. 16 p.
- 19. Yavorskaya I.M. Diffraction of a plane longitudinal wave by a round cylinder // Reports. USSR Academy of Sciences. 1964. V. 158. No. 6. P. 1287—1290.
- 20. Yavorskaya I.M. Diffraction of plane stationary elastic waves by smooth convex cylinders // Applied Mathematics and Mechanics. 1965. V. 29. No. 3. P. 493—508.
- 21. Aleshin N.P., Baranov V.Yu., Mogilner L.Yu., Yarovoy A.A. Increasing the detectability of volumetric defects // Defectoscopiya. 1985. No. 7. P. 24—30.