On the Existence of Optimal Control in the Problem of Optimizing the Lowest Coefficient of a Semilinear Evolutionary Equation

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The paper studies the problem of optimizing the lowest coefficient understood as a function with values in a Banach space, which enters linearly into an abstract semilinear pseudoparabolic evolutionary differential equation in a Banach space. For this problem, an existence theorem for an optimal control is proved. Due to the nonlinearity of the equation under study, the author uses his previous results on the total preservation of the unique global solvability (on the totally global solvability) and on the estimation of solutions for similar equations. This estimate turns out to be significant in the course of the study. As an example, the Oskolkov’s hydrodynamic system of equations is considered.

作者简介

A. Chernov

National Research Lobachevsky State University of Nizhny Novgorod

编辑信件的主要联系方式.
Email: chavnn@mail.ru
603950, Nizhny Novgorod, Russia

参考

  1. Вахитов И.С. Обратная задача идентификации старшего коэффициента в уравнении диффузии-реакции // Дальневосточный матем. журнал. 2010. Т. 10. № 2. С. 93–105.
  2. Ismayilova G.G. The problem of the optimal control with a lower coefficient for weakly nonlinear wave equation in the mixed problem // European journal of pure and applied mathematics 2020. V. 13. № 2. P. 314–322.
  3. Прилепко А.И., Костин А.Б., Соловьев В.В. Обратные задачи нахождения источника и коэффициентов для эллиптических и параболических уравнений в пространствах Гёльдера и Соболева // Сиб. журн. вычисл. и прикл. матем. 2017. Т. 17. Вып. 3. С. 67–85.
  4. Лионс Ж.-Л. Оптимальное управление системами, описываемыми уравнениями с частными производными. М.: Мир, 1972. 415 с.
  5. Tröltzsch F. Optimal control of partial differential equations. Theory, methods and applications. Graduate Studies in Mathematics. V. 112. Providence, RI: American Mathematical Society (AMS), 2010. xv+399 p.
  6. Bewley T., Temam R., Ziane M. Existence and uniqueness of optimal control to the Navier-Stokes equations // C. R. Acad. Sci., Paris, Ser. I, Math. 2000. V. 330. № 11. P. 1007–1011.
  7. Лионс Ж.-Л. Управление сингулярными распределенными системами. М.: Наука, 1987. 368 с.
  8. Фурсиков А.В. Оптимальное управление распределенными системами. Теория и приложения. Новосибирск: Научная книга, 1999. xii+352 с.
  9. Чернов А.В. Об одном мажорантном признаке тотального сохранения глобальной разрешимости управляемого функционально-операторного уравнения // Изв. вузов. Матем. 2011. № 3. С. 95–107.
  10. Чернов А.В. О тотальном сохранении глобальной разрешимости операторного дифференциального уравнения: -теория // Функционально-дифференциальные уравнения: теория и приложения. Материалы конференции, посвященной 95-летию со дня рождения профессора Н.В. Азбелева (Пермь, 17–19 мая 2017). Пермь: Изд-во Пермского нац. исслед. политех. ун-та, 2018. С. 263–276.
  11. Чернов А.В. О тотально глобальной разрешимости управляемого операторного уравнения второго рода // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2020. Т. 30. Вып. 1. С. 92–111.
  12. Чернов А.В. О тотально глобальной разрешимости эволюционного вольтеррова уравнения второго рода // Вестник Удмуртского университета. Математика. Механика. Компьютерные науки. 2022. Т. 32. Вып. 4. С. 593–614.
  13. Чернов А.В. Операторные уравнения II рода: теоремы о существовании и единственности решения и о сохранении разрешимости // Дифференциальные уравнения. 2022. Т. 58. № 5. С. 656–668.
  14. Чернов А.В. О тотальном сохранении однозначной глобальной разрешимости операторного уравнения первого рода с управляемой добавочной нелинейностью // Изв. вузов. Математика. 2018. № 11. С. 60–74.
  15. Хартман Ф. Обыкновенные дифференциальные уравнения. М.: Мир, 1970. 721 с.
  16. Plotnikov P.I., Turbin M.V., Ustiuzhaninova A.S. Existence theorem for a weak solution of the optimal feedback control problem for the modified Kelvin-Voigt model of weakly concentrated aqueous polymer solutions // Dokl. Math. 2019. V. 100. № 2. P. 433–435.
  17. Idczak D., Walczak S. Existence of optimal control for an integro-differential Bolza problem // Optim. Control Appl. Methods. 2020. V. 41. № 5. P. 1604–1615.
  18. Гаевский Х., Грёгер К., Захариас К. Нелинейные операторные уравнения и операторные дифференциальные уравнения. М.: Мир, 1978. 336 с.
  19. Васильев Ф.П. Методы решения экстремальных задач. М.: Наука, 1981. 400 с.
  20. Лионс Ж.-Л. Некоторые методы решения нелинейных краевых задач. М.: Мир, 1972. 588 с.
  21. Павлова М.Ф., Тимербаев М.Р. Пространства Соболева (теоремы вложения). Казань: КГУ, 2010. 123 с.
  22. Функциональный анализ / Под ред. С.Г. Крейна. М.: Наука, 1972. 544 с.
  23. Канторович Л.В., Акилов Г.П. Функциональный анализ. М.: Наука, 1984. 752 с.
  24. Фаминский А.В. Функциональные пространства эволюционного типа. М.: Изд-во РУДН, 2016. 146 с.
  25. Рыжиков В.В. Курс лекций по функциональному анализу. М.: МГУ, 2004. 24 с.
  26. Соболев С.Л. Некоторые применения функционального анализа в математической физике. М.: Наука, 1988. 336 с.
  27. Звягин В.Г., Турбин М.В. Исследование начально-краевых задач для математических моделей движения жидкостей Кельвина–Фойгта // Современная математика. Фундаментальные направления. 2009. Т. 31. С. 3–144.

补充文件

附件文件
动作
1. JATS XML

版权所有 © А.В. Чернов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».