Реальная точность линейных схем высокого порядка аппроксимации в задачах газовой динамики

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается новая тестовая задача для одномерных уравнений газовой динамики. Начальные данные в этой задаче представляют собой периодическую гладкую волну. За конечное время в течении газа формируются ударные волны. Исследуется сеточная сходимость двух линейных схем третьего порядка аппроксимации: бикомпактной схемы и схемы Русанова. Демонстрируется, что в области влияния ударной волны обе схемы имеют лишь первый порядок интегральной сходимости. В то же время при расчете уравнений изоэнтропической газовой динамики выбранные схемы сходятся не менее чем со вторым порядком. Библ. 38. Фиг. 6.

Полный текст

Доступ закрыт

Об авторах

М. Д. Брагин

ИПМ РАН; ИГиЛ СО РАН

Автор, ответственный за переписку.
Email: michael@bragin.cc
Россия, 125047 Москва, Миусская пл., 4; 630090 Новосибирск, пр-т Акад. Лаврентьева, 15

Список литературы

  1. Ekaterinaris J. A. High-order accurate, low numerical diffusion methods for aerodynamics // Prog. Aerosp. Sci. 2005. V. 41. P. 192–300.
  2. Холодов А. С., Холодов Я. А. О критериях монотонности разностных схем для уравнений гиперболического типа // Ж. вычисл. матем. и матем. физ. 2006. Т. 46. № 9. С. 1638–1667.
  3. Годунов С. К. Разностный метод численного расчета разрывных решений уравнений гидродинамики // Матем. сб. 1959. Т. 47. № 3. С. 271–306.
  4. Бисикало Я. В., Жилкин А. Г., Боярчук А. А. Газодинамика тесных двойных звезд. М.: Физматлит, 2013. 632 с.
  5. Toro E. F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction. Springer, 2009.
  6. Van Leer B. Toward the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method // J. Comput. Phys. 1979. V. 32. № No. 1. P. 106–136.
  7. Harten A. High resolution schemes for hyperbolic conservation laws // J. Comput. Phys. 1983. V. 49. P. 357–393.
  8. Cockburn B., Shu C.-W. Nonlinearly stable compact schemes for shock calculations // SIAM J. Numer. Anal. 1994. V. 31. No. № 3. P. 607–627.
  9. Harten A., Osher S. Uniformly high-order accurate nonoscillatory schemes // SIAM J. Numer. Analys. 1987. V. 24. № 2. P. 279–309.
  10. Liu X., Osher S., Chan T. Weighted essentially non-oscillatory schemes // J. Comput. Phys. 1994. V. 115. № 1. P. 200–212.
  11. Jiang G., Shu C.-W. Efficient implementation of weighted ENO schemes // J. Comput. Phys. 1996. V. 126. P. 202–228.
  12. Gustafsson B., Olsson P. Fourth-order difference methods for hyperbolic IBVPs // J. Comput. Phys. 1995. V. 117. № 2. P. 300–317.
  13. Yee H. C., Sandham N. D., Djomehri M. J. Low-dissipative high-order shock-capturing methods using characteristic-based filters // J. Comput. Phys. 1999. V. 150. № 1. P. 199–238.
  14. Ekaterinaris J. A. Implicit, high-resolution, compact schemes for gas dynamics and aeroacoustics // J. Comput. Phys. 1999. V. 156. № 2. P. 272–299.
  15. Попов И. В., Фрязинов И. В. Конечно-разностный метод решения уравнений газовой динамики с введением адаптивной искусственной вязкости // Матем. моделирование. 2008. Т. 20. № 8. С. 48–60.
  16. Guermond J.-L., Pasquetti R., Popov B. Entropy viscosity method for nonlinear conservation laws // J. Comput. Phys. 2011. V. 230. № 11. P. 4248–4267.
  17. Kurganov A., Liu Y. New adaptive artificial viscosity method for hyperbolic systems of conservation laws // J. Comput. Phys. 2012. V. 231. № 24. P. 8114–8132.
  18. Остапенко В. В. О сходимости разностных схем за фронтом нестационарной ударной волны // Ж. вычисл. матем. и матем. физ. 1997. Т. 37. № 10. С. 1201–1212.
  19. Casper J., Carpenter M. H. Computational consideration for the simulation of shock-induced sound // SIAM J. Sci. Comput. 1998. V. 19. № 1. P. 813–828.
  20. Engquist B., Sjögreen B. The convergence rate of finite difference schemes in the presence of shocks // SIAM J. Numer. Anal. 1998. V. 35. P. 2464–2485.
  21. Остапенко В. В. О построении разностных схем повышенной точности для сквозного расчета нестационарных ударных волн // Ж. вычисл. матем. и матем. физ. 2000. Т. 40. № 12. С. 1857–1874.
  22. Ковыркина О. А., Остапенко В. В. О сходимости разностных схем сквозного счета // Докл. АН. 2010. Т. 433. № 5. С. 599–603.
  23. Ковыркина О. А., Остапенко В. В. О реальной точности разностных схем сквозного счета // Матем. моделирование. 2013. Т. 25. № 9. С. 63–74.
  24. Михайлов Н. А. О порядке сходимости разностных схем WENO за фронтом ударной волны // Матем. моделирование. 2015. Т. 27. № 2. С. 129–138.
  25. Ладонкина М. Е., Неклюдова О. А., Остапенко В. В., Тишкин В. Ф. О точности разрывного метода Галеркина при расчете ударных волн // Ж. вычисл. матем. и матем. физ. 2018. Т. 58. № 8. С. 148–156.
  26. Ковыркина О. А., Остапенко В. В. О монотонности и точности схемы КАБАРЕ при расчете обобщенных решений с ударными волнами // Вычисл. техн. 2018. Т. 23. № 2. С. 37–54.
  27. Ковыркина О. А., Остапенко В. В. О точности схем типа MUSCL при расчете ударных волн // Докл. АН. 2018. Т. 492. № 1. С. 43–48.
  28. Брагин М. Д., Рогов Б. В. О точности бикомпактных схем при расчете нестационарных ударных волн // Ж. вычисл. матем. и матем. физ. 2020. Т. 60. № 5. С. 884–899.
  29. Ковыркина О. А., Остапенко В. В. О построении комбинированных разностных схем повышенной точности // Докл. АН. 2018. Т. 478. № 5. С. 517–522.
  30. Зюзина Н. А., Ковыркина О. А., Остапенко В. В. Монотонная разностная схема, сохраняющая повышенную точность в областях влияния ударных волн // Докл. АН. 2018. Т. 482. № 6. С. 639–643.
  31. Ладонкина М. Е., Неклюдова О. А., Остапенко В. В., Тишкин В. Ф. Комбинированная схема разрывного метода Галеркина, сохраняющая повышенную точность в областях влияния ударных волн // Докл. АН. 2019. Т. 489. № 2. С. 119–124.
  32. Брагин М. Д., Рогов Б. В. Комбинированная монотонная бикомпактная схема, имеющая повышенную точность в областях влияния ударных волн // Докл. АН. 2020. Т. 492. № 1. С. 79–84.
  33. Михайловская М. Н., Рогов Б. В. Монотонные компактные схемы бегущего счета для систем уравнений гиперболического типа // Ж. вычисл. матем. и матем. физ. 2012. Т. 52. № 4. С. 672–695.
  34. Bragin M. D., Rogov B. V. Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations // Appl. Numer. Math. 2020. V. 151. P. 229–245.
  35. Русанов В. В. Разностные схемы третьего порядка точности для сквозного счета разрывных решений // Докл. АН СССР. 1968. Т. 180. № 6. С. 1303–1305.
  36. Burstein S. Z., Mirin A. A. Third order difference methods for hyperbolic equations // J. Comput. Phys. 1970. V. 5. № 3. P. 547–571.
  37. Alexander R. Diagonally implicit Runge–Kutta methods for stiff O.D.E.’s // SIAM J. Numer. Anal. 1977. V. 14. № 6. P. 1006–1021.
  38. Рождественский Б. Л., Яненко Н. Н. Системы квазилинейных уравнений и их приложения к газовой динамике. М.: Наука, 1978. 688 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Фиг. 1. Скорость, плотность и давление газа в начальный момент времени (t = 0).

3. Фиг. 2. Плотность газа (сплошные кривые) и порядок интегральной сходимости (кружки) при t = 1.3 и t = 2,5, полученные по бикомпактной схеме (а) и схеме Русанова (б) на сетке с шагом h = 0.01.

4. Фиг. 3. Относительные погрешности инвариантов Римана при , полученные по бикомпактной схеме (сплошные кривые), монотонизированной бикомпактной схеме (штриховые кривые) и схеме Русанова (кружки) на сетке с шагом h = 0.01.

5. Фиг. 4. Удельная энтропия газа при t = 2.5, рассчитанная по бикомпактной схеме на сетке с шагом h = 0.01.

6. Фиг. 5. Плотность газа (сплошные кривые) и порядок интегральной сходимости (кружки) при t = 1.3 и t = 2.5, полученные по бикомпактной схеме (а) и схеме Русанова (б) на сетке с шагом h = 0.01.

7. Фиг. 6. Относительные погрешности инвариантов Римана при t = 2.5, полученные по бикомпактной схеме (сплошные кривые), монотонизированной бикомпактной схеме (штриховые кривые) и схеме Русанова (кружки) на сетке с шагом h = 0.01.


© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».