FINDING COMPLEX-VALUED SOLUTIONS TO THE BRENT EQUATIONS BY REDUCING THEM TO A NONLINEAR LEAST SQUARES PROBLEM
- Authors: Kaporin I.E1
-
Affiliations:
- Federal Research Center Computer Science and Control of the Russian Academy of Sciences
- Issue: Vol 64, No 9 (2024)
- Pages: 1578-1588
- Section: General numerical methods
- URL: https://bakhtiniada.ru/0044-4669/article/view/277171
- DOI: https://doi.org/10.31857/S0044466924090015
- EDN: https://elibrary.ru/WLIAJA
- ID: 277171
Cite item
Abstract
About the authors
I. E Kaporin
Federal Research Center Computer Science and Control of the Russian Academy of Sciences
Email: igorkaporin@mail.ru
Moscow, Russia
References
- Brent R. P. Algorithms for matrix multiplication. (Report No. STAN-CS-70-157). Stanford Univ. CA Dept. of Computer Science, 1970, 58 p.
- Strassen V. Gaussian elimination is not optimal //Numer. Math. 13, 354—356 (1969).
- Laderman J. D. A noncommutative algorithm for multiplying 3x3 matrices using 23 multiplications. Bull. Amer. Math. Soc. 82, 126-128 (1976).
- Pan V. How we can speed up matrix multiplication? // SIAM Review, 26(3), 393-415 (1984).
- Smirnov A. V. The bilinear complexity and practical algorithms for matrix multiplication // Comp. Math. Mathem. Phys. 53, 1781-1785 (2013).
- Karstadt E., Schwartz O. Matrix multiplication, a little faster // J. of the ACM (JACM). 2020, 67(1), 1-31.
- Kaporin I. A Derivative-Free Nonlinear Least Squares Solver. In: Olenev N.N., Evtushenko Y.G., Jacimovic M., Khachay M., Malkova V. (eds.) Optimization and Applications. OPTIMA 2021. Lecture Notes in Computer Science, V. 13078. P. 217-230. Springer, Cham. (2021). https://doi.org/10.1007/978-3-030-91059-4_16
- Oseledets I. V., Savostyanov D. V. Minimization methods for approximating tensors and their comparison // Computational Mathematics and Mathematical Physics, 2006, 46(10), 1641-1650
- Kaporin I. E., Axelsson O. On a class of nonlinear equation solvers based on the residual norm reduction over a sequence of affine subspaces // SIAM J. Sci. Comput. 16(1), 228-249 (1994)
- Kaporin I. Preconditioned Subspace Descent Method for Nonlinear Systems of Equations // Open Computer Science, 2020, 10(1), 71-81
- Kozak D., Molinari C., Rosasco L., Tenorio L., Villa S. Zeroth order optimization with orthogonal random directions. // Mathematical Programming. 2022. V. 199. P. 1-41.
- Armijo L. Minimization of functions having Lipschitz continuous first partial derivatives // Pacific Journal of mathematics 16(1), 1-3 (1966).
- Ballard G., Ikenmeyer C., Landsberg J. M., Ryder N. The geometry of rank decompositions of matrix multiplication II: 3x3 matrices. // Journal of Pure and Applied Algebra, 2019, 223(8), 3205-3224.
- Berger G. O., Absil P. A., De Lathauwer L., Jungers R. M., Van Barel M. Equivalent polyadic decompositions of matrix multiplication tensors // J. of Computational and Applied Mathematics, 2022, 406, 113941. https://doi.org/10.1016/j.cam.2021.113941.
- Hopcroft J. E., Kerr L. R. On minimizing the number of multiplications necessary for matrix multiplication // SIAM Journal on Applied Mathematics, 1971, 20(1):30—36.
- Fawzi A. et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature, 2022, 610(7930): 47-53.
Supplementary files
