= ПРИКЛАДНАЯ ЭЛЕКТРОХИМИЯ И ЗАЩИТА МЕТАЛЛОВ ОТ КОРРОЗИИ =

УДК 547-327:620.197.3

ДИАМИДЫ НЕОДЕКАНОВОЙ КИСЛОТЫ КАК ИНГИБИТОРЫ КИСЛОТНОЙ КОРРОЗИИ НИЗКОУГЛЕРОДИСТОЙ СТАЛИ

© С. О. Бондарева, М. Ф. Абдуллин, Т. Р. Нугуманов

Уфимский институт химии Уфимского федерального исследовательского центра РАН, 450054, г. Уфа, пр. Октября, д. 69 E-mail: bondarevaso@anrb.ru

Поступила в Редакцию 26 июня 2023 г. После доработки 13 октября 2023 г. Принята к публикации 16 октября 2023 г.

Простым одностадийным методом термической конденсации неодекановой кислоты с диэтилентри-амином, триэтилентетрамином и пентаэтиленгексамином синтезированы диамиды неодекановой кислоты. Гравиметрическим методом изучено их ингибирующее действие на коррозию низкоуглеродистой стали Cm3 в $2~M~H_2SO_4$, 1~u~5~M~HCl. Установлено, что все синтезированные соединения эффективно ингибируют коррозию стали: степень защиты при комнатной температуре в $2~M~H_2SO_4$ составляет 94-95%, а в 1~M~HCl — 96-97%.

Ключевые слова: ингибиторы кислотной коррозии; низкоуглеродистая сталь; диамиды неодекановой кислоты; этиленовые амины

DOI: 10.31857/S0044461823030088; EDN: PIEHGY

Благодаря низкой цене и таким свойствам, как прочность, пластичность, ковкость и свариваемость, низкоуглеродистую сталь широко применяют в строительстве объектов с применением стальных конструкций, в химической и нефтегазовой промышленности. Однако сплавы низкоуглеродистой стали легко подвергаются коррозии, особенно в агрессивных кислотных растворах при кислотном травлении сталей, кислотном удалении накипи, промышленной кислотной очистке и кислотной обработке нефтяных скважин [см., например, 1-3]. Для борьбы с коррозией в кислых средах часто применяют адсорбционные ингибиторы на основе азотсодержащих соединений [3, 4]: например, производные пиперазинов [5, 6], аминов или их солей [7–9] и имидазолинов [10, 11]. Поскольку в промышленных имидазолиновых ингибиторах изначально в значительных количествах присутствуют их предшественники: амиды и диамиды, некоторые авторы [12] считают целесообразным сразу синтезировать амидные ингибиторы, которые дешевле, устойчивее при хранении и обладают хорошими антикоррозионными свойствами [11–14].

В растворах кислот (чаще всего применяют H_2SO_4 или HCl) азотсодержащие ингибиторы протонируются по атомам азота, а на изначально положительно заряженной поверхности железа адсорбируются анионы кислот (сульфат-ионы или хлорид-ионы), образуя защитный слой и придавая поверхности металла некоторый отрицательный заряд. На такой поверхности первоначально за счет электростатического взаимодействия могут адсорбироваться органические катионы азотсодержащего ингибитора. Далее

Бондарева С. О. и др.

вследствие донорно-акцепторного взаимодействия ингибитор образует более прочные хемосорбционные связи с поверхностью металла [15, 16] за счет sp^3 - и sp^2 -гибридизованных атомов азота плоского кольца (например, имидазолинового, пиперазинового или триазольного) и π-электронов ароматического ядра или ненасыщенных C=O, C=N или C=C связей [17, 18]. Гидрофобные алкильные заместители в молекуле ингибитора экранируют положительно заряженные атомы азота и снижают кулоновское отталкивание соседних зарядов, способствуя более плотной упаковке самоорганизующегося поверхностного слоя [19]. Можно ожидать, что диамиды на основе неодекановой кислоты и этиленовых аминов обладают ингибирующим действием по отношению к низкоуглеродистой стали в растворах кислот, поскольку в этих соединениях наряду с sp^3 -гибридизованными атомами азота присутствуют две амидные группы с гидрофобными а,а'-разветвленными алкильными заместителями.

Цель работы — синтез диамидов неодекановой кислоты на основе этиленовых аминов и изучение их противокоррозионного действия по отношению к низкоуглеродистой стали в растворах H_2SO_4 и HCl.

Экспериментальная часть

Для синтеза диамидов использовали неодекановую кислоту (техн., ExxonMobil Chemical) и очищенные перегонкой диэтилентриамин, триэтилентетрамин и пентаэтиленгексамин (техн., ОАО «Каустик»). В работе применяли хлороформ (ч.д.а.), изопропиловый спирт (х.ч.), H₂SO₄ (х.ч.), HCl (х.ч.) (все — ЗАО «Экос-1»); NаОН (х.ч.), NаCl (х.ч.) (оба – ООО «ХлоренХима») и NaClO₄ (х.ч., Славгородский завод им. Г. С. Верещагина).

Спектры ЯМР записывали на спектрометре Bruker Avance III (Bruker), рабочие частоты 500.13 (¹H) и 125.47 МГц (¹³C), растворитель — CDCl₃ (99.8%) (Deutero GmbH), внутренний стандарт – тетраметилсилан (99.7%) (Merck). ИК-спектры регистрировали на ИК-Фурье-спектрометре TENSOR 27 (Bruker) в пленке в области 4000-700 см-1, масс-спектры на жидкостном квадрупольном масс-спектрометре LCMS-2010EV (Shimadzu) химической ионизацией при атмосферном давлении в режиме детектирования положительных и отрицательных ионов. Пентаэтиленгексамин до и после перегонки анализировали методом газожидкостной хроматографии на газовом хроматографе GC-2014 (Shimadzu) с капиллярной колонкой SE-30, 30 м \times 0.25 мм \times 0.25 мкм при 200-320°C.

Диамиды синтезировали одностадийным методом термической конденсации соответствующего этиленового амина с неодекановой кислотой в атмосфере азота (ос.ч. первый сорт, АО «Линде Уралтехгаз») при мольном соотношении амина и неодекановой кислоты 1:3.

Синтез и идентификация N,N'-(иминодиэтан-2,1-диил)-ди(неононанамид)а (I) и N,N'-[этан-1,2-диил-ди(иминоэтан-2,1-диил)]ди(неононанамид)а (II) описаны ранее в [20] и [21] соответственно.

Синтез смесевого диамида (III) осуществляли при мольном соотношении предварительно перегнанного при 195–230°C пентаэтиленгексамина (5 мм рт. ст.) и неодекановой кислоты 1:3. Реакционную смесь перемешивали при 80-100°C в течение 0.5 ч, затем нагревали до 190 ± 10°C и выдерживали в течение 6 ч с отводом паров воды, выделяющейся в процессе реакции. После охлаждения очищали от примесей: 2 г продукта растворили в 10–15 мл хлороформа и последовательно промывали равными объемами 0.2 М HCl (трехкратно) для удаления моноацилированных этиленовых аминов, 0.2 M NaOH (трехкратно) для удаления непрореагировавшей неодекановой кислоты и насыщенным раствором NaCl. После удаления хлороформа получили 1.05 г смесевого диамида (III) (53%), вязкой жидкости желтого цвета, представляющей собой высококипящую смесь изомеров (табл. 1). Содержание целевых диамидов в синтезированном реагенте, по данным потенциометрического титрования, составило не менее 95%. ИК-спектр (пленка), v, см⁻¹: 3339 ср (NH), 1634 с (C=O), 1531 c $[\delta(NH)]$. Chektp $\beta(MP)^{-1}H$ (CDCl₃), δ, м. д.: 0.84-1.65 м (C₉H₁₉), 2.48 уш.с., 2.59 уш.с. $(C_{\underline{H}_2}-N<)$, 2.73 ym.c. $(C_{\underline{H}_2}-C_{\underline{H}_2}-N_{\underline{H}_2}-N_{\underline{H}_2})$, 3.32 ym.c. (CH₂—NHCO), 6.38–6.59 ym.c. (NHCO). Спектр ЯМР 13 С (CDCl₃), $\delta_{\rm C}$, м. д.: 8.88, 11.35, 14.10, 22.58, 25.45 (C₉H₁₉), 37.52, 39.04 (<u>C</u>H₂—NHCO), 41.79, 41.96, 45.73 (C_{четв}), 48.84, 49.19 (<u>C</u>H₂—CH₂— NHCO), 52.70, 53.26, 53.39, 53.78, 54.02, 56.28, 57.84 $(\underline{CH_2}-N\leq)$, 177.26, 178.02 (C=O).

Концентрацию диамидов и неодекановой кислоты в исследуемых образцах определяли методом потенциометрического титрования в 60%-ном водном изопропиловом спирте (фоновый электролит — 0.5 М NaClO₄), титрование проводили на pH-метре OP-211/1 (Radelkis) с комбинированным стеклянным электродом ЭСК 10601/7 (ООО «Измерительная техника»).

Скорость коррозии углеродистой стали Ст3 (ПАО «Ашинский металлургический завод») определяли гравиметрическим методом в колбах и термостатируемых ячейках объемом 50 мл, используя стальные пластинки прямоугольной формы разме-

ром $14.0 \times 30.7 \times 0.9$ мм, в которых для крепления были высверлены отверстия диаметром 3.5 мм. Пластинки обезжиривали изопропанолом, промывали дистиллированной водой, полученной при помощи дистиллятора ДЭ-10 (ООО «Завод «Эмо»), высушивали фильтровальной бумагой и взвешивали. Противокоррозионные свойства синтезированных соединений оценивали в 2.0 М растворах H_2SO_4 при температурах 25 ± 0.5 и 50 ± 0.1 °C, в 1.0 и 5.0 М растворах HCl при температурах 25 ± 0.5 и 40 ± 0.1 °C соответственно. После испытаний пластинки промывали дистиллированной водой, высушивали и повторно взвешивали.

Скорость коррозии (у) рассчитывали по формуле

$$v = \frac{m_1 + m_2}{S_{\tau}},\tag{1}$$

где m_1 и m_2 — соответственно масса образца до и после испытаний (г), S — площадь образца (м²), τ — время испытаний (ч).

Эффективность добавок оценивали коэффициентом торможения (γ) и степенью защиты (Z) в процентах, которые вычисляли по формулам

$$\gamma = \frac{v_0}{v_t},\tag{2}$$

$$Z = \frac{v_0 + v_t}{v_0} \cdot 100\%, \tag{3}$$

где v_0 и v_t — соответственно скорости коррозии образца при травлении без ингибитора и с ингибитором.

Данные, приведенные в работе, получены усреднением результатов трех измерений.

Обсуждение результатов

Технический пентаэтиленгексамин представляет собой смесь пентаэтиленгексаминов Н2N(С2H4NH)5H линейного и разветвленного строения ($M_{\text{выч}}$ 232.2375) с изомерными аминоэтилпиперазинами ($M_{\text{выч}}$ 258.2532) [22, 23]. Действительно, в масс-спектре перегнанного образца пентаэтиленгексамина регистрировались молекулярные ионы с m/z 233 и 259 и интенсивностями 100 и 22% соответственно. На основании данных газожидкостной хроматографии концентрация аминоэтилпиперазинов в данном образце составила 30-35%. По сравнению с диацилированными диэтилентриамином и триэтилентетрамином (табл. 1) потенциальный ингибитор коррозии на основе диацилированных пентаэтиленгексаминов и аминоэтилпиперазинов должен содержать большее количество активных центров. Исследования показали, что эффективное диацилирование пентаэтиленгексамина достигается при мольном соотношении пентаэтиленгексамина и неодекановой кислоты, равном 1:3. В ИК-спектре диамида (III) наблюдаются интенсивные полосы поглощения колебаний амидных групп ν (C=O) при 1634 см⁻¹ и δ (N—H) при 1531 см^{-1} . В спектре ЯМР 13 С диамида (III) присутствуют слабопольные сигналы *sp*²-гибридизованных углеродов вторичных амидных групп (177–178 м. д.)

Таблица 1 Структуры синтезированных диамидов

Соединение	Структурная формула	Молекулярная масса
(I)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	411.4
(II)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	454.4
(III)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	540.5
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	566.5

^{*} $R_1 = Me$, $R_2 \ge Me$, $R_3 > Me$, $R_1 + R_2 + R_3 = R'_1 + R'_2 + R'_3 = C_8H_{19}$.

300 Бондарева С. О. и др.

Таблица 2						
Коэффициент торможения и степень защиты стали Ст3 при различной концентрации диамидов неодекановой						
кислоты в растворах $2.0 \text{ M H}_2\mathrm{SO}_4$						

Условия проведения коррозионных испытаний	Концентрация, г·л ⁻¹	N,N'-(Иминодиэтан-2,1- диил)-ди(неононанамид)		N,N'-[Этан-1,2-диил- ди(иминоэтан-2,1-диил)]- ди(неононанамид)		Смесь диамидов на основе пентаэтиленгексамина	
		коэффициент торможения	степень защиты, %	коэффициент торможения	степень защиты, %	коэффициент торможения	степень защиты, %
$T = 25 \pm 0.5$ °C,	0.025	2.00	50.00	3.30	69.70	7.91	86.97
48 ч	0.05	15.98	93.66	9.33	88.93	12.84	92.16
	0.10	25.24	95.93	17.86	94.30	17.16	94.02
	0.20				_	22.68	95.59
$T = 50 \pm 0.1$ °C,	0.05		_			4.14	75.82
1 ч	0.10	5.64	80.05	2.21	54.58	6.39	84.30
	0.15	_		_		7.71	87.00
	0.20	7.49	86.58	8.50	88.22	8.23	87.72
	0.30	8.16	87.74	8.26	87.85		_
	0.40	8.96	88.84	_		7.68	87.00

и отсутствуют характерные слабопольные сигналы побочных имидазолиновых продуктов (170–172 м. д.) и исходной неодекановой кислоты (182–183 м. д.).

На основании масс-спектра, в котором регистрируются молекулярные ионы с m/z 541.7, 567.8 и 695.9 с интенсивностями 41, 100 и 15% соответственно, в смесевом диамиде (III) наряду с диамидами пентаэтиленгексаминов и аминоэтилпиперазинов (табл. 1) присутствует и небольшое количество триацилированных пентаэтиленгексаминов разветвленного строения.

По результатам гравиметрических измерений все синтезированные диамиды замедляют коррозию стали. В растворах 2 М Н₂SO₄ степень защиты увеличивается с ростом концентрации ингибиторов (табл. 2), при 25°C зависимости коэффициентов торможения от концентрации диамидов линеаризуются в координатах lgy-lgc. Относительно высокий защитный эффект достигается при концентрации диамидов (I)–(III) $0.05-0.10 \ \Gamma \cdot \pi^{-1}$. Увеличение температуры до 50°C приводит к существенному уменьшению коэффициентов торможения. Подобное снижение ингибирующей активности адсорбционных азотсодержащих ингибиторов с ростом температуры обычно объясняют десорбцией молекул ингибитора с поверхности металла [13, 24]. С увеличением концентрации диамидов коэффициенты торможения растут, но первоначальный защитный эффект не достигается даже при увеличении концентрации с 0.05 до 0.3−0.4 г·л−1.

В процессе травления HCl преимущественно растворяет оксиды железа, поверхность металла получается гладкая и качественная, без отслаивающихся оксидных пленок. На свободной от оксидов поверхности молекулы ингибитора адсорбируются лучше, и эффективность адсорбционных ингибиторов в солянокислых растворах обычно выше, чем в сернокислых растворах. По этой причине в растворах HCl диамиды (I)—(III) ожидаемо показали более высокое защитное действие (табл. 3): так, в 1 M HCl 97%-ная степень защиты обеспечивается диамидами (I)—(III) при достаточно низких концентрациях $0.005-0.025 \ \Gamma \cdot \pi^{-1}$.

Линейной зависимости коэффициентов торможения от концентрации диамида в данном случае не наблюдается, хотя эффективность ингибиторов с ростом концентрации увеличивается. В более жестких условиях (4.8 М HCl, 40°C) защитное действие диамидов снижается, но при увеличении концентрации до $0.20~\rm f\cdot n^{-1}$ все они обеспечивают 93-94%-ную степень защиты. В целом в растворах и $\rm H_2SO_4$, и HCl диамиды с одним, двумя и четырьмя атомами аминного азота показали близкие защитные эффекты.

Для оценки защитного действия синтезированных соединений (I)—(III) было проведено их сравнение с литературными данными (табл. 4), представленные соединения охарактеризованы авторами как эффективные или высокоэффективные ингибиторы коррозии стали в солянокислых или сернокислых растворах.

Таблица 3 Коэффициент торможения и степень защиты стали Ст3 при различной концентрации диамидов неодекановой кислоты в растворах HCl

Условия проведения коррозионных испытаний	Концентрация,	N,N'-(Иминодиэтан-2,1- диил)-ди(неононанамид)		N,N'-[этан-1,2-диил- ди(иминоэтан-2,1-диил)]- ди(неононанамид)		Смесь диамидов на основе пентаэтиленгексамина	
	г∙л ^{−1}	коэффициент торможения	степень защиты, %	коэффициент торможения	степень защиты, %	коэффициент торможения	степень защиты, %
1.0 M HCl,	0.005	11.64	91.41	26.52	96.14	34.61	97.03
$T = 25 \pm 0.5$ °C, 72 ч	0.01	22.38	95.41	32.70	96.94	35.77	97.17
	0.025	33.85	97.01	29.63	96.60	37.67	97.35
	0.05	27.47	96.33	_		31.66	96.84
$5.0 \text{ M HCl},$ $T = 40 \pm 0.1 ^{\circ}\text{C},$ 1 ч	0.05	1.74	42.63	_		8.67	88.46
	0.10	5.64	93.43	10.86	90.80	12.68	92.11
	0.20	17.79	94.38	17.16	94.01	15.68	93.57

 Таблица 4

 Сравнение защитного действия диамидов и других соединений по отношению к низкоуглеродистой стали в растворах кислот

Соединение	Литературный источник	Условия эксперимента	Концентрация ингибитора, г \cdot л $^{-1}$	Степень защиты, %
N-(Нафталин-1-ил)докоз-13-енамид	[13]	1.0 M HCl,	0.1	74.7
		T=25°С, 96 ч	0.5	96.8
		1.0 M HCl, T = 60°C, 96 ч	0.5	95.0
2-Метил-N-[4-нитро-3-(трифторметил)фенил]- пропанамид	[25]	1.0 M HCl, T = 30°C, 3 ч	0.05	94.2
		1.0 M HCl, T = 40°С, 3 ч	0.05	87.0
1-(1-(4-Аминофенил)-5-метил-1H-1,2,3-триазол- 4-ил)этанол	[26]	1.0 M HCl, T = 25°C, 48 ч	0.5	97.9
N-(2-(2-Неононил-4,5-дигидро-1H-имидазол-1-ил)- этил)неодеканамид	[27]	1.0 M HCl, T = 25°C, 72 ч	0.05	93.5
Смесь диамидов на основе пентаэтиленгексамина		1.0 M HCl, T = 25°C, 72 ч	0.005	97.0
2-Гидрокси-5-нитробензальдегид	[28]	$0.5 \text{ M H}_2\text{SO}_4,$ $T = 25^{\circ}\text{C}, 72 \text{ ч}$	0.1 1.0	83.1 96.1
2-Тетрадецил-гексагидропирроло $[1,2-b]$ изоксазол	[29]	1.0 M H ₂ SO ₄ , T = 30°С, 6 ч	0.2	97.7
3-((3-Метил-1-фенил-1Н-пиразоло[3,4- <i>d</i>]пиримидин-4-ил)окси)пропангидразид	[30]	1.0 M H ₂ SO ₄ , T = 30°С, 7 ч	0.2	95.7
N-(2-(2-Неононил-4,5-дигидро-1H-имидазол-1-ил)- этил)неодеканамид	[27]	2.0 M H ₂ SO ₄ , T = 25°С, 48 ч	0.2	96.1
N,N'-(Иминодиэтан-2,1-диил)-ди(неононанамид)		$2.0 \text{ M H}_2\text{SO}_4,$ $T = 25^{\circ}\text{C}, 48 \text{ ч}$	0.1	95.93

302 Бондарева C. О. и др.

Таблица 5
Результаты исследования защитной способности неочищенных диамидов неодекановой кислоты

Varanug managawag		Степень защиты, %					
Условия проведения коррозионных испытаний	Концентрация ингибитора, г·л ⁻¹	N,N'-(иминодиэтан-2,1- диил)-ди(неононанамид)	N,N'-[этан-1,2-диил- ди(иминоэтан-2,1-диил)]- ди(неононанамид)	смесь диамидов на основе пентаэтиленгексамина			
2.0 M H ₂ SO ₄ ,	0.05	_	_	89.81			
$T = 25 \pm 0.5$ °C,	0.10	92.18	67.20	92.64			
48 ч	0.20	94.67	91.08	91.89			
2.0 M H ₂ SO ₄ ,	0.10	_	_	66.64			
$T = 50 \pm 0.1$ °C,	0.20	_	50.50	86.29			
1 ч	0.30	_	70.45	86.24			
	0.45	64.65	_	_			
	0.50	_	66.15	_			
	0.60	74.73	_	_			
	0.80	77.14	_	_			
1.0 M HCl,	0.01	_	92.32	97.00			
$T = 25 \pm 0.5$ °C, 72 ч	0.02	_	95.60	_			
	0.05	96.38	_	_			
5.0 M HCl,	0.01	_	_	91.51			
$T = 40 \pm 0.1$ °C,	0.02	92.70	_	92.50			
1 ч	0.04	_	91.25				

В целом диамиды (I) и (III) достигают сопоставимого с потенциальными ингибиторами защитного действия при более низких концентрациях (в растворах НСІ при значительно более низких концентрациях), при повышенных температурах эффективность диамидов (I)-(III) снижается. В солянокислых растворах диамиды оказались более эффективны по сравнению с ранее изученным 1-(2-неонониламидоэтил)-2-неононил-2-имидазолином [27], предшественником которого является диамид (I). В защиту ингибиторов имидазолинового типа можно сказать, что их обычно применяют для защиты нефтепромыслового оборудования как ингибиторы сероводородной и углекислотной коррозии в минерализованных водных средах, а не как ингибиторы кислотной коррозии.

В качестве потенциальных ингибиторов коррозии испытывали не только диамиды, но и продукты их синтеза, представлявшие собой смеси соответствующих диамидов (45-60%), побочных моноамидов (1-10%) и непрореагировавшей неодекановой кислоты (36-50%). Из приведенных в табл. 5 результатов гравиметрических испытаний следует, что все

неочищенные диамиды обладают высокой ингибирующей эффективностью в растворах HCl и проявляют защитный эффект от 92 до 97% в концентрации $0.01-0.05 \ \Gamma \cdot \pi^{-1}$.

В растворах H_2SO_4 более высокой ингибирующей эффективностью обладает диамид (I), достигая защитного эффекта 94–95% в концентрации $0.2~\mathrm{r}\cdot\mathrm{n}^{-1}$. При нагревании до 50°C лучший защитный эффект обеспечивает диамид (III).

Выводы

Синтезированные на основе диэтилентриамина, триэтилентетрамина и пентаэтиленгексамина диамиды неодекановой кислоты обладают высоким защитным действием при коррозии низкоуглеродистой стали в солянокислых и сернокислых растворах. В растворах 1 М HCl 95–97%-ная степень защиты достигается при концентрации диамида $0.005-0.01~\text{г}\cdot\text{л}^{-1}$, в растворах 2 М H₂SO₄ 92–94%-ная степень защиты достигается при концентрации диамида $0.1-0.2~\text{г}\cdot\text{л}^{-1}$. Неочищенные диамидные продукты являются практически готовыми ингибиторами коррозии.

Благодарности

Работа выполнена с использованием оборудования Центра коллективного пользования «Химия» УфИХ УФИЦ РАН и Регионального центра коллективного пользования «Агидель» УФИЦ РАН.

Финансирование работы

Работа выполнена по теме государственного задания № 123011300044-5.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов, требующего раскрытия в данной статье.

Информация об авторах

Бондарева Светлана Олеговна, к.х.н. ORCID: https://orcid.org/0000-0001-8545-4092

Абдуллин Марат Фаритович, к.х.н.

ORCID: https://orcid.org/0000-0002-9894-213X

Нугуманов Тимур Римович, к.х.н.

ORCID: https://orcid.org/0000-0003-3355-7262

Список литературы

- [1] Sehmi A., Ouici H. B., Guendouzi A., Ferhat M., Benali O., Boudjellal F. Corrosion inhibition of mild steel by newly synthesized pyrazole carboxamide derivatives in HCl acid medium: Experimental and theoretical studies // J. Electrochem. Soc. 2020. V. 167. N 15. ID 155508.
 - https://doi.org/10.1149/1945-7111/abab25
- [2] *Иванов Е. С.* Ингибиторы коррозии в кислых средах. М.: Металлургия, 1986. С. 96–121.
- [3] Finšgar M., Jackson J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A Review // Corrosion Sci. 2014. V. 86. P. 17–41. https://doi.org/10.1016/j.corsci.2014.04.044
- [4] Verma D. K., Dewangan Y., Dewangan A. K., Asatkar A. Heteroatom-based compounds as sustainable corrosion inhibitors: An Overview // J. Bio- Tribo-Corros. 2021. V. 7. N 1. ID 15.
 - https://doi.org/10.1007/s40735-020-00447-7
- [5] Zhang J. T., Bai Z. Q., Zhao J., Feng Y. R., Wang Y. The synthesis and evaluation of N-carbonyl piperazine as a hydrochloric acid corrosion inhibitor for high protective 13Cr steel in an oil field // Pet. Sci. Technol. 2012. V. 30. N 17. P. 1851–1861.
 - https://doi.org/10.1080/10916466.2010.512884
- [6] Pat.US 2021/0115570 A1 (publ. 2021). Method of inhibiting metal corrosion with a piperazine-based polyuria.

- [7] *Damborenea J., Bastidas J. M., Vázquez A. J.* Adsorption and inhibitive properties of four primary aliphatic amines on mild steel in 2 M hydrochloric acid // Electrochim. Acta. 1997. V. 42. N 3. P. 455–459. https://doi.org/10.1016/S0013-4686(96)00250-2
- [8] Yadav M., Kumar S., Sharma U., Yadav P. N. Substituted amines as corrosion inhibitors for N80 steel in 15%HCl // J. Mater. Environ. Sci. 2013. V. 4. N 5. P. 691–700. http://www.jmaterenvironsci.com/ Journal/vol4-5.html
- [9] *Malinowski S., Wróbel M., Woszuk A.* Quantum chemical analysis of the corrosion inhibition potential by aliphatic amines // Materials. 2021. V. 14. N 20. ID 6197. https://doi.org/10.3390/ma14206197
- [10] Duda Y., Govea-Rueda R., Galicia M., Beltra'n H. I., Zamudio-Rivera L. S. Corrosion inhibitors: Design, performance, and computer simulations // J. Phys. Chem. B. 2005. V. 109. N 47. P. 22674–22684. https://doi.org/10.1021/jp0522765
- [11] Kousar K., Dowhyj M., Walczak M. S., Ljungdahl T., Wetzel A., Oskarsson H., Walton A. S., Restuccia P., Harrison N. M., Lindsay R. Corrosion inhibition in acidic environments: Key interfacial insights with photoelectron spectroscopy // Faraday Discuss. 2022. V. 236. P. 374–388. https://doi.org/10.1039/d1fd00106j
- [12] Jiang Y. Y., Chen Y., Ye Z. Y., Chen H., Zhang Z., Zhang J. Q., Cao C. N. Inhibition of iron corrosion in HCL solutions by n-[2-[(2-aminoethyl) amino]

ethyl]-9-octadecenamide // Corrosion. 2013. V. 69. N 7. P. 672–680. https://doi.org/10.5006/0740

- [13] Elsharif A. M., Abubshait S. A., Abdulazeez I., Abubshait H. A. Synthesis of a new class of corrosion inhibitors derived from natural fatty acid: 13-Docosenoic acid amide derivatives for oil and gas industry // Arab. J. Chem. 2020. V. 13. N 5. P. 5363–5376. https://doi.org/10.1016/j.arabjc.2020.03.015
- [14] Loto C. A., Loto R. T., Joseph O. O. Effect of benzamide on the corrosion inhibition of mild steel in sulphuric acid // S. Afr. J. Chem. 2017. V. 70. N 1. P. 38–43.
- [15] Muthamma K., Kumari P., Lavanya M., Rao Suma A. Corrosion inhibition of mild steel in acidic media by N-[(3,4-dimethoxyphenyl)methyleneamino]-4-hydroxybenzamide // J. Bio- Tribo-Corros. 2021. V. 7. N 1. ID 10. https://doi.org/10.1007/s40735-020-00439-7
- [16] Кузнецов Ю. И. Физико-химические аспекты ингибирования коррозии металлов в водных растворах // Успехи химии. 2004. Т. 73. № 1. С. 79–93 [Kuznetsov Yu. I. Physicochemical aspects of metal corrosion inhibition in aqueous solutions // Russ. Chem. Rev. 2004. V. 73. N 1. P. 75–87. https://doi.org/10.1070/RC2004v073n01ABEH000864; https://www.elibrary.ru/hqtqlp].
- [17] Hrimla M., Bahsis L., Laamari M. R., Julve M., Stiriba S. E. An Overview on the performance of

504 Бондарева C. О. и др.

1,2,3-triazole derivatives as corrosion inhibitors for metal surfaces // Int. J. Mol. Sci. 2022. V. 23. N 1. 16. P. 1–32. https://doi.org/10.3390/ijms23010016

- [18] Chauhan D. S., Verma C., Quraishi M. A. Molecular structural aspects of organic corrosion inhibitors: Experimental and computational insights // J. Mol. Struct. 2021. V. 1227. ID 129374. https://doi.org/10.1016/j.molstruc.2020.129374
- [19] Yoo S. H., Kim Y. W., Chung K., Baik S. Y., Kim J. S. Synthesis and corrosion inhibition behavior of imidazoline derivatives based on vegetable oil // Corros. Sci. 2012. V. 59. P. 42–54. https://doi.org/10.1016/j.corsci.2012.02.011
- [20] Бондарева С. О., Нугуманов Т. Р., Назаров И. С., Муринов Ю. И. Синтез экстрагента на основе неодекановой кислоты для концентрирования и разделения редкоземельных металлов // ЖПХ. 2019. Т. 92. № 11. С. 1435—1440. https://doi.org/10.1134/S0044461819110100 https://www.elibrary.ru/ueopvc [Bondareva S. O., Nugumanov T. R., Nazarov I. S., Murinov Yu. I. Synthesis of an extractant based on neodecanoic acid for rare earth metal preconcentration and separation // Russ. J. Appl. Chem. 2019. V. 92. N 11. P. 1531—1536. https://doi.org/10.1134/S1070427219110107].
- [21] Бондарева С. О., Голубятникова Л. Г., Хисамутдинов Р. А., Муринов Ю. И. Синтез и экстракционные свойства диамидов неодекановой кислоты по отношению к платиновым металлам // Вестн. Башкир. ун-та. Химия. 2019. Т. 24. № 2. С. 367—370. https://www.elibrary.ru/mdhola
- [22] *Garner P. J., Nunes C. P.* Ethylene amines production and uses // Rev. Port. Quim. 1973 V. 15 N 3. P. 158–165.
- [23] Bergstedt L., Widmark G. Analysis of oligoethylene oligoamines // Acta Chem. Scand. 1970. V. 24. P. 2713–2723. https://doi.org/10.3891/acta.chem.scand.24-2713
- [24] Al-Amiery A. A., Kadhum A. A. H., Kadihum A., Mohamad A. B., How C. K., Junaedi S. Inhibition of mild steel corrosion in sulfuric acid solution by new

- Schiff base // Materials. 2014. V. 7. N 2. P. 787–804. https://doi.org/10.3390/ma7020787
- [25] Fouda A. S., El-Desoky H. S., Abdel-Galeil M. M., Mansour D. Amide compounds as corrosion inhibitors for carbon steel in acidic environment // Prot. Met. Phys. Chem. Surf. 2022. V. 58. N 1. P. 151–167. https://doi.org/10.1134/S2070205122010105
- [26] Resende G. O., Teixeira S. F., Figueiredo I. F., Godoy A. A., Lougon D. J. F., Cotrim B. A., De Souza F. C. Synthesis of 1,2,3-triazole derivatives and its evaluation as corrosion inhibitors for carbon steel // Int. J. Electrochem. 2019. V. 2019. ID 6759478. https://doi.org/10.1155/2019/6759478
- [27] Бондарева С. О., Муринов Ю. И. Одностадийный синтез ингибитора коррозии стали 1-(2-неонониламидоэтил)-2-неононил-2-имидазолина // ЖПХ. 2022. Т. 95. № 2. С. 231–238. https://www.elibrary.ru/dduewf [Bondareva S. O., Murinov Yu. I. One-step synthesis of a steel corrosion inhibitor, 1-(2-neononylamidoethyl)-2-neononyl-2-imidazoline // Russ. J. Appl. Chem. 2022. V. 95. N 2. P. 256–263. https://doi.org/10.1134/S1070427222020045].
- [28] Flores-Frias E. A., Gonzalez-Hernandez A., Barba V., Lopez-Sesenes R., Landeros-Martinez L. L., Flores-De los Rios J. P., Gonzalez-Rodriguez J. G. Experimental and theoretical evaluation of new 3,3'-methylenedianiline Schiff bases as corrosion inhibitors for carbon steel in sulfuric acid // Int. J. Corros. Scale Inhib. 2021. V. 10. N 3. P. 1189–1212. https://doi.org/10.17675/2305-6894-2021-10-3-21
- [29] Saeed M. T. Corrosion inhibition of carbon steel in sulfuric acid by bicyclic isoxazolidines // Anti-Corros. Methods Mater. 2004. V. 51. N 6. P. 389–398. https://doi.org/10.1108/00035590410560930
- [30] Hameed R. S. A., Alfakeer M., Abdallah M. Inhibiting Properties of some heterocyclic amide derivatives as potential nontoxic corrosion inhibitors for carbon steel in 1.0 M sulfuric acid // Surf. Eng. Appl. Electrochem. 2018. V. 54. N 6. P. 599–606. https://doi.org/10.3103/S1068375518060054