——— КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ **——**

УЛК 546.654

МОНОГИДРАТ ПРОПИОНАТА ЛАНТАНА И РАЗНОЛИГАНДНЫЙ КОМПЛЕКС С ДИЭТИЛЕНТРИАМИНОМ: СИНТЕЗ, КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА, ПРИМЕНЕНИЕ В ХИМИЧЕСКОМ ОСАЖДЕНИИ ТОНКИХ ПЛЕНОК НИКЕЛАТА ЛАНТАНА

© 2023 г. М. П. Кендин^{а, b}, Р. А. Гашигуллин^b, И. А. Мартынова^a, А. А. Аносов^{а, b}, Л. М. Цымбаренко^{a, *}

^а Московский государственный университет им. М.В. Ломоносова, Химический факультет, Ленинские горы, 1, Москва, 119991 Россия ^b Московский государственный университет им. М.В. Ломоносова, Факультет наук о материалах, Ленинские горы, 1, Москва, 119991 Россия *e-mail: tsymbarenko@gmail.com

Поступила в редакцию 02.05.2023 г. После доработки 08.06.2023 г. Принята к публикации 08.06.2023 г.

Прием разнолигандного комплексообразования с хелатирующим тридентатным лигандом диэтилентриамином (DETA) использован для модифицирования строения слоистого координационного полимера на основе пропионата (Prop) лантана. Синтезирован моногидрат пропионата лантана, для которого совокупностью методов анализа установлены состав и кристаллическая структура, также определено строение комплексов пропионатов лантана и никеля с диэтилентриамином. Показано, что исходный $[La_2(H_2O)_2Prop_6]$ обладает слоистым строением, в то время как разнолигандный комплекс $[La_2(DETA)Prop_6]$ MeCN (MeCN — ацетонитрил) представлен цепочечной структурой. Разработана методика химического осаждения из раствора, позволяющая получать фазово-чистые ориентированные пленки $LaNiO_3$, демонстрирующие металлическую проводимость и допускающие применение в качестве проводящих подслоев.

Ключевые слова: карбоксилат, кристаллическая структура, рентгеновская дифракция, тонкие пленки, никелат

DOI: 10.31857/S0044457X2360113X, **EDN:** WODXEF

ВВЕДЕНИЕ

Координационные соединения редкоземельных элементов (РЗЭ) привлекают внимание многих исследователей как перспективные материалы с необычными функциональными свойствами (люминесцентными [1], магнитными [2, 3] и пр.), а также как прекурсоры неорганических наноматериалов [4, 5]. В частности, низшие алифатические карбоксилаты РЗЭ широко исследуются как эффективные прекурсоры для нанесения оксидных тонкопленочных структур методом химического осаждения из раствора [5–8]. Важнейшим требованием, предъявляемым к соединениям-прекурсорам, является способность образовывать однородное аморфное покрытие на поверхности подложки без кристаллизации твердых комплексов. Образование последних можно предотвратить путем введения дополнительных нейтральных лигандов, к примеру, алифатических полиаминов или аминоспиртов [9-11], а также за счет использования карбоксилат-анионов с объемными конформационно гибкими алифатическими группами, например, пропионатов [7]. Таким образом, исследование пропионатов РЗЭ и их взаимодействия с полиаминами представляет серьезный интерес для нанесения тонких пленок.

Хотя для пропионатов РЗЭ подробно исследованы процессы термического разложения в окислительной и инертной атмосфере [12—15], а также имеются разрозненные данные о кристаллических структурах (табл. S1), сообщения о применении указанных соединений непосредственно для нанесения оксидных пленок сравнительно немногочисленны. В частности, в литературе нет данных по нанесению тонких пленок никелата лантана LaNiO₃, обладающих металлической проводимостью, из растворов пропионатов металлов с полиаминами. Разработка новых координационных соединений металлов неразрывно связана с выполнением рентгеноструктурного анализа как одного из наиболее достоверных методов идентификации со-

единений. В то же время структурная химия пропионатов РЗЭ изучена менее подробно по сравнению с гомологичными ацетатами, а данные о структурах разнолигандных комплексов (РЛК) пропионатов РЗЭ с алифатическими полиаминами отсутствуют, это прежде всего связано с чувствительностью подобных соединений к гидролизу [11].

В настоящей работе синтезирован моногидрат пропионата (**Prop**) лантана, для которого совокупностью методов анализа установлены состав и кристаллическая структура, также определено строение комплексов пропионатов лантана и никеля с диэтилентриамином (**DETA**). Растворы на основе карбоксилатов лантана и никеля с DETA использованы для нанесения ориентированных тонких пленок никелата лантана LaNiO₃ методом химического осаждения из раствора.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе для синтеза использовали следующие реактивы без дополнительной очистки: $La_2(CO_3)_3 \cdot 6H_2O$ (Реахим, х. ч.), Ni(OAc) $_2 \cdot 4H_2O$ (Реахим, х. ч.), пропионовая кислота (HProp; Русхим, 99%), диэтилентриамин (DETA; Sigma-Aldrich, 99%), диэтиловый эфир (МЕДХИМПРОМ, ч. д. а.), изопропанол ([†]PrOH; НПП "ГАММА", х. ч.). Ацетонитрил (MeCN; Иреа2000, х. ч.) абсолютировали над P_2O_5 , перегоняли в токе сухого аргона и хранили под избыточным давлением аргона над молекулярными ситами (3 Å, Acros).

Синтез моногидрата пропионата лантана $[La_2(H_2O)_2Prop_6]$ (1). Порошок $La_2(CO_3)_3 \cdot 6H_2O$ (4.00 г, 7.07 ммоль) диспергировали в 75 мл дистиллированной воды и добавляли 6 мл (~80 ммоль) НРгор. Реакционную смесь перемешивали при 70°C в течение нескольких часов до растворения основной части осадка, затем фильтровали и упаривали маточный раствор при 70°C до 10% от начального объема. Выпавший хлопьевидный осадок отделяли фильтрованием, промывали несколькими миллилитрами диэтилового эфира и сушили в эксикаторе над NaOH при пониженном давлении в течение 48 ч. Выход продукта составил ~75%. Монокристаллы соединения 1, пригодные для рентгеноструктурного анализа, были выращены путем медленного упаривания маточного раствора в течение нескольких суток при комнатной температуре.

	La	C	Н
Найдено, %:	37.2;	28.7;	4.4.
Для $C_{18}H_{34}La_2O_{14}$			
рассчитано, %:	36.9;	28.7;	4.6.

ИК-спектр (v, см $^{-1}$): 3515 (пл.), 3398, 3168 v(O-H); 2977, 2940, 2879 v(C-H); 1669 δ (H $_2$ O); 1534 v $_a$ s(COO); 1465 δ as(CH $_3$); 1412 v $_s$ (COO); 1378 δ s(CH $_3$); 1294,

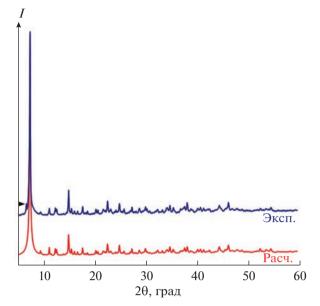
1286, 1242, 1080, 1020, 1013, 1003, 892, 816, 756 (ш.), 666 (пл.), 642, 628 (пл.)

Синтез разнолигандного комплекса пропионалантана с диэтилентриамином [La2(DE-**ТА)Ргор₆] · MeCN (2).** Порошок **1** (0.50 г, 0.67 ммоль) помещали в Шленк-ампулу и просушивали в динамическом вакууме при 130°C в течение 30 мин. Затем ампулу заполняли сухим аргоном и охлаждали до комнатной температуры. В реакционную среду в противотоке аргона вносили 1.5 мл MeCN и 145 мкл (1.34 ммоль) DETA при перемешивании до образования прозрачного раствора, из которого через 5 мин выделялся мелкокристаллический осадок. К раствору с осадком добавляли еще 2.3 мл MeCN и нагревали реакционную смесь до 90°C при непрерывном перемешивании до полного растворения. Медленное охлаждение раствора в течение нескольких часов до комнатной температуры привело к образованию крупнокристаллического осадка, из которого были отобраны пригодные для РСА монокристаллы 2. Маточный раствор декантировали, а кристаллы, неустойчивые в атмосферных условиях, хранили в Шленкампуле под избыточным давлением аргона и извлекали непосредственно перед дифракционным экспериментом.

Приготовление растворов для нанесения тонких пленок. Навески $0.225 \,\Gamma(0.30 \,\text{ммоль}) \,[\text{La}_2(\text{H}_2\text{O})_2\text{Prop}_6]$ и 0.150 г (0.60 ммоль) Ni $(OAc)_2 \cdot 4H_2O$ помещали в стеклянную виалу, после чего добавляли 270 мкл (2.50 ммоль) DETA и 260 мкл ⁷PrOH. Реакционную смесь перемешивали в закрытой виале при нагревании до 65°C до образования вязкого прозрачного раствора фиолетового цвета, который затем разбавляли ⁱPrOH до объема 6 мл. Приготовленный раствор фильтровали для удаления нерастворимых примесей и немедленно использовали для нанесения тонких пленок. После медленного упаривания раствора на воздухе через неделю в вязком гелеобразном продукте были обнаружены единичные монокристаллы комплекса никеля 3, для которых также был выполнен рентгеноструктурный анализ.

Нанесение тонких пленок никелата лантана La-NiO₃. Монокристаллическую подложку $SrTiO_3(001)$ (STO) размером $10 \times 3 \times 0.5$ мм³ очищали от поверхностных загрязнений ультразвуковой обработкой в дистиллированной воде и изопропаноле. Подложку обмакивали в раствор прекурсоров и вытягивали с постоянной скоростью 1 мм/c, после чего производили предварительную сушку в вертикальной печи при 150° C в течение 10 мин в воздушной атмосфере, затем отжигали при 500° C в той же печи в течение 10 мин. После этого подложку с нанесенной пленкой помещали в горизонтальную трубчатую печь и отжигали в токе кислорода при 700° C в течение 2 ч.

Методы физико-химического анализа. Термогравиметрический анализ проводили на приборе Derivatograph Q-1500 D в воздушной атмосфере в алундовых тиглях без крышек при скорости на-


грева 10 град/мин в диапазоне температур 40—1000°С. Элементный анализ на С и Н выполняли на приборе Elementar Vario MICRO cube. Содержание La определяли из данных ТГА при 1000°С.

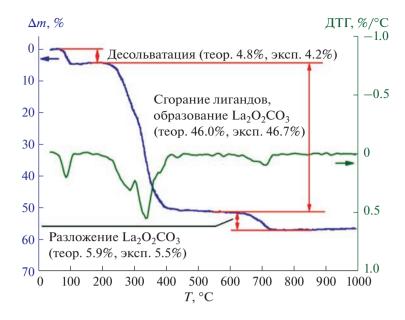
ИК-спектры записывали на приборе Perkin—Elmer Spectrum 3 в режиме нарушенного полного внутреннего отражения (диапазон волновых чисел $520-4000 \text{ см}^{-1}$).

Данные рентгеновской дифракции для порошков и тонких пленок при комнатной температуре записывали на дифрактометре Rigaku MiniFlex 600 (напряжение и ток рентгеновской трубки 40 кВ и 15 мА, CuK_{α} -излучение, K_{β} -фильтр, однокоординатный детектор D/teX Ultra, ω -2 θ -сканирование, диапазон углов $2\theta = 3^{\circ}-60^{\circ}$). Параметры решетки для соединения $[La_2(H_2O)_2Prop_6]$ при комнатной температуре определяли из полнопрофильного уточнения порошковой рентгенограммы с моделью кристаллической структуры $[La_2(H_2O)_2Prop_6]$, установленной на основании данных PCA, в программе JANA2006 [16].

Дифракционные эксперименты на монокристаллах проводили на приборах Bruker Smart APEX II $(MoK_{\alpha}$ -излучение, двухкоординатный ССD-детектор, 120 K) и Bruker D8 QUEST (Мо K_{α} -излучение, оптика Монтеля, двухкоординатный детектор Photon III, 100 K). Первичные дифракционные данные индицировали и интегрировали в программе SAINT из пакета SHELXTL PLUS [17–19]. Кристаллические структуры были решены прямыми методами (SHELXS) и уточнены полноматричным методом наименьших квадратов (SHELXL) с анизотропными тепловыми параметрами для всех неводородных атомов и фиксированными изотропными тепловыми параметрами для атомов водорода. Атомы водорода молекул воды локализованы из разностных Фурье-синтезов электронной плотности и уточнены с мягкими ограничениями на длины связей О-Н и валентные углы НОН. Остальные атомы водорода были введены в расчет из геометрических соображений и уточнены в модели "наездника". Коррекция поглощения выполнена по методу multi-scan в программе SADABS [20]. Кристаллографические данные, характеристики эксперимента и уточнения для кристаллических структур 1, 2 и 3 приведены в табл. 1, избранные межатомные расстояния – в табл. 2. Полный набор кристаллографических данных для соединений 1, 2 и 3 депонирован в Кембриджском банке кристаллографических данных (CCDC № 2259948, 2259949 и 2263976) и может быть получен по ссылке www.ccdc.cam.ac.uk/data request/cif. Анализ геометрии координационного окружения ионов РЗЭ и никеля в терминах идеализированных многогранников выполнен в программе Shape v.2.1 [21].

Исследование поверхности тонких пленок $LaNiO_3$ методом атомно-силовой микроскопии (**ACM**) проводили на приборе NT-MDT NTegra Aura в полуконтактном режиме. Измерение температурной зависимости проводимости пленок

Рис. 1. Порошковая рентгенограмма для соединения $[\text{La}_2(\text{H}_2\text{O})_2\text{Prop}_6]$ (1) в сопоставлении с теоретическим профилем, рассчитанным с использованием структуры 1, определенной из данных РСА, и параметров решетки при 300 K, полученных из полнопрофильного уточнения: a=9.513(4), b=12.500(3), c=12.317(6) Å, $\alpha=98.28(2)^\circ$, $\beta=92.40(4)^\circ$, $\gamma=107.34(2)^\circ$, $\gamma=107.34($


LaNiO $_3$ осуществляли четырехконтактным методом с использованием установки на основе прецизионного мультиметра Keithley 2700 и криостата замкнутого цикла Advanced Research Systems 8200, оснащенного температурным контроллером LakeShore 331. Спектры импеданса для пленок LaNiO $_3$ записывали на приборе GWINSTEK LCR-78101G в диапазоне частот 20—100000 Гц с амплитудным значением напряжения 50 мВ.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Синтез соединений $[La_2(H_2O)_2Prop_6]$ (1) $u [La_2(DETA)Prop_6] \cdot MeCN$ (2)

Большинство карбоксилатов РЗЭ достаточно просты в синтезе, обычно их получают протолитическими [22—25] или обменными [26, 27] реакциями. Синтез моногидрата пропионата лантана 1 взаимодействием $La_2(CO_3)_3 \cdot 6H_2O$ с водным раствором НРгор является технически удобным и дает требуемый продукт, не загрязненный примесями (например, сольватами пропионата лантана иного состава).

Рентгенограмма порошкового образца 1 содержит только рефлексы, совпадающие с расчетными пиками для соединения 1 (рис. 1), что подтверждает фазовую чистоту полученного продукта.

Рис. 2. Данные ТГА для соединения [$La_2(H_2O)_2Prop_6$] (1).

Согласно данным ТГА, соединение **1** устойчиво до \sim 65–70°C, а при дальнейшем нагревании оно подвергается десольватации, а затем — термодеструкции органических лигандов (\sim 200–400°C) с образованием промежуточного продукта $La_2O_2CO_3$, который, в свою очередь, разлагается при температурах >600–650°C (рис. 2) с образованием La_2O_3 . Таким образом, является оправданным проведение отжига тонких пленок $LaNiO_3$ при 700°C, поскольку при этой температуре загрязнение пленки остаточным $La_2O_2CO_3$ исключено.

Пропионаты РЗЭ, многие из которых обладают полимерным строением [22, 24, 28], зачастую демонстрируют низкую растворимость в большинстве органических растворителей, вследствие чего необходимо вводить в координационную сферу ионов РЗЭ дополнительные нейтральные лиганды (в данном случае DETA) для разрушения полимерной структуры и образования моноядерных комплексов. Ранее нами было показано, что комплексообразование карбоксилатов РЗЭ с DETA в мольном соотношении Ln^{3+} : DETA = 1 : 2 зачастую приводит к образованию хорошо растворимых молекулярных или ионных соединений, пригодных для использования в нанесении неорганических тонких пленок (например, сложных фторидов РЗЭ-натрия [29]). Таким образом, для приготовления раствора для нанесения тонких пленок использовали соотношение компонентов La^{3+} : Ni^{2+} : DETA ~ 1:1:4 (по 2 экв DETA на комплексообразование с ионами металлов обоих типов). Тем не менее выделить из полученного раствора смешанометаллический РЛК лантана-никеля, который мог бы служить непосредственным предшественником никелата лантана, не удалось,

вследствие чего является целесообразным приготовление растворов для нанесения непосредственно из соответствующих карбоксилатов металлов с добавлением DETA; при этом смешанометаллические комплексы, если они существуют в растворе, генерируются in situ. Попытки получить твердый РЛК пропионата лантана с DETA из растворов с соотношением концентраций La³⁺: DETA = 1:2 также оказались безуспешными ввиду протекания необратимого гидролиза комплекса в присутствии следов влаги (даже в условиях использования Шленк-аппаратуры), поэтому синтез РЛК проводили с соотношением компонентов La^{3+} : DETA = 1 : 1. Полученный продукт 2 хотя формально и не соответствует стехиометрии, используемой при приготовлении растворов, все же демонстрирует роль нейтрального лиганда DEТА при комплексообразовании, а именно – частичное разрушение и снижение размерности полимерной сети, образуемой ионами РЗЭ и пропионат-анионами.

В отличие от соединения 1, которое допускает хранение в атмосферных условиях, разнолигандный комплекс 2 чрезвычайно неустойчив на воздухе, что не позволяет провести фазовый и химический анализ объемных образцов. Поэтому соединение 2 было исследовано только методом РСА монокристалла. Соединение 3, полученное в количестве единичных кристаллов, также было исследовано только методом РСА.

Кристаллическая структура [La₂(H₂O)₂Prop₆] (1)

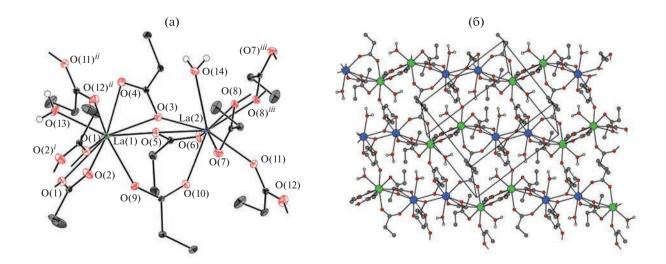
Согласно данным PCA, кристаллическая структура $[La_2(H_2O)_2Prop_6]$ (1) представляет собой слои-

Таблица 1. Кристаллографические данные, характеристики эксперимента и уточнения для кристаллических структур **1**, **2** и **3**

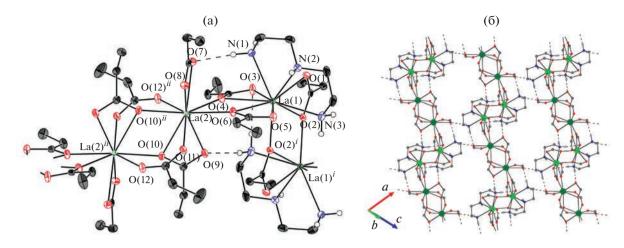
Параметр	[La2(H2O)2Prop6] (1)	$[La_2(DETA)Prop_6] \cdot MeCN (2)$	$[Ni(DETA)_2]Prop_2 \cdot 2H_2O(3)$	
Брутто-формула	C ₁₈ H ₃₄ La ₂ O ₁₄	C ₂₄ H ₄₆ La ₂ N ₄ O ₁₂	$C_{14}H_{40}N_6NiO_6$	
M, г/моль	752.27	860.47	447.23	
Дифрактометр, излучение	Bruker Smart APEX II, Mo K_{α}		Bruker D8 QUEST, Mo K_{α}	
Метод сканирования		ı		
Сингония	Триклинная	Триклинная	Моноклинная	
Пр. гр.	<i>P</i> –1	<i>P</i> –1	$P2_1/n$	
<i>T</i> , K	120(2)	120(2)	100(2)	
a, Å	9.5195(7)	12.1598(11)	8.6567(3)	
$b, ext{Å}$	11.7158(9)	12.4080(12)	11.4072(5)	
c, Å	12.2493(9)	13.1287(12)	22.2139(9)	
α, град	98.2714(12)	64.9848(16)	90	
β, град	91.2558(12)	68.0270(16)	95.9763(16)	
γ, град	106.2163(13)	74.5245(17)	90	
V, Å ³	1295.37(17)	1650.7(3)	2181.67(15)	
Z	2	2	4	
Цвет, габитус	Бесцветная пластина	Бесцветная иголка	Розовый блок	
Размеры, мм	$0.38 \times 0.15 \times 0.05$	$0.62 \times 0.10 \times 0.09$	$0.290 \times 0.230 \times 0.190$	
$d_{\mathrm{pac}^{\mathrm{q}}}$, г/см 3	1.929	1.731	1.362	
μ , mm ⁻¹	3.317	2.614	0.929	
Уникальных отражений ($R_{\rm int}$)	7449 (0.0209)	9620 (0.0285)	6102 (0.0488)	
Число отражений с $I > 2\sigma(I)$	6449	8095	4975	
Число параметров, число мягких ограничений	334, 1	380, 0	268, 4	
$R_1[I > 2\sigma(I)], wR_2$	0.0220, 0.0489	0.0253, 0.0537	0.0406, 0.0986	
Goodness-of-fit (F ²)	1.027	1.013	1.037	
Коррекция поглощения	SADABS	SADABS	SADABS	
T_{\min} , T_{\max}	0.3807, 0.9484	0.5037, 0.7045	0.6154, 0.7459	
ρ_{\min} , ρ_{\max} , $e \ Å^{-3}$	-0.731, 1.234	-0.547, 0.990	-0.312, 0.803	

стый координационный полимер. Данное соединение кристаллизуется в триклинной сингонии (пр. гр. P—1). В кристалле присутствуют симметрически неэквивалентные атомы La двух типов: La(1) и La(2). Каждый атом La(1) координирует атомы кислорода трех хелатно-мостиковых (O(1)—O(2), O(3)—O(4), O(5)) и одного мостикового (O(9)) пропионат-анионов, молекулы воды (O(13)), а также атомы кислорода хелатно-мостикового (O(1) i) и мостикового (O(12) ii) пропионатионов от симметрически связанных фрагментов. Таким образом, KЧ (La(1)) = 9, а координационный полиэдр наилучшим образом описывается как "маффин" 1 : 5 : 3 (MFF-9, фактор невязки

СShM 1.938 [21]). Атом La(2) обладает схожим строением координационной сферы, за исключением перестановки лигандов и искажением полиэдра, который в данном случае описывается как одношапочная тетрагональная антипризма (CSAPR-9, фактор невязки CShM 2.360). Пары атомов La(1)—La(1) i и La(2)—La(2) ii объединяются хелатно-мостиковыми лигандами в димеры [La₂(H₂O)₂Prop₆], которые, в свою очередь, последовательно связываются друг с другом в полимерные цепи, параллельные направлению [$\overline{1}$ 01]. Данные цепи сшиваются мостиковыми пропионат-анионами, образуя протяженные слои, па-


Таблина 2.	Избранные	длины связей в	структурах 1.	2и3

[La2(H2O)2Prop6] (1)		$[La_2(DETA)Prop_6] \cdot MeCN (2)$		$[Ni(DETA)_2]Prop_2 \cdot 2H_2O(3)$	
Связь	d, Å	Связь	d, Å	Связь	d, Å
La(1)-O(1)	2.7163(15)	La(1)-O(1)	2.5641(16)	Ni(1)-N(1)	2.1558(15)
La(1) - O(2)	2.5625(17)	La(1)-O(2)	2.6733(15)	Ni(1)-N(2)	2.0748(15)
$La(1)-O(1^{i})$	2.5334(16)	$La(1) - O(2^{i})$	2.4953(15)	Ni(1)-N(3)	2.1292(16)
La(1) - O(3)	2.7389(16)	La(1)-O(3)	2.6521(17)	Ni(1)-N(4)	2.1578(15)
La(1) - O(4)	2.5794(15)	La(1)-O(4)	2.7447(16)	Ni(1) - N(5)	2.0728(15)
La(1) - O(5)	2.5165(15)	La(1)-O(5)	2.6163(16)	Ni(1)-N(6)	2.1258(16)
La(1) - O(9)	2.5075(15)	La(1)-O(6)	2.6563(16)		
$La(1)-O(12^{ii})$	2.4451(17)	La(1)-N(1)	2.6673(19)		
La(1)-O(13)	2.5031(17)	La(1)-N(2)	2.7170(19)		
La(2) - O(3)	2.5663(15)	La(1)-N(3)	2.6996(19)		
La(2) - O(5)	2.6118(16)	La(2)-O(4)	2.5145(16)		
La(2) - O(6)	2.5803(18)	La(2)-O(6)	2.5525(16)		
La(2) - O(7)	2.5870(17)	La(2)-O(7)	2.6108(16)		
La(2) - O(8)	2.6318(16)	La(2)-O(8)	2.5761(16)		
$La(2) - O(8^{iii})$	2.5718(14)	La(2)–O(9)	2.6352(17)		
La(2) - O(10)	2.4554(14)	La(2)-O(10)	2.6966(16)		
La(2)-O(11)	2.4625(15)	$La(2)-O(10^{ii})$	2.5066(15)		
La(2)-O(14)	2.6153(14)	La(2)-O(11)	2.5048(16)		
		$La(2)-O(12^{ii})$	2.4825(16)		


раллельные плоскости (010) (рис. 3), внутри которых присутствуют водородные связи между молекулами воды и пропионат-анионами ($d(O\cdots O) \sim 2.72-2.94 \text{ Å}$, $\angle(O-H\cdots O) \sim 156^{\circ}-173^{\circ}$). При этом взаимодействие между слоями осуществляется только посредством сил Ван-дер-Ваальса.

Следует отметить, что димерные блоки типа $[Ln_2(H_2O)_n Prop_6]$, присутствующие в кристалли-

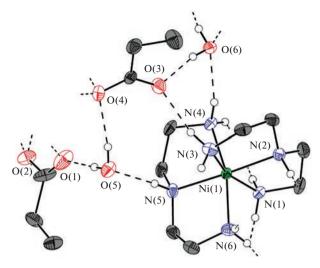
ческой структуре 1, также наблюдали для пропионатов и ацетатов прочих РЗЭ, однако для ацетатов РЗЭ наиболее характерно образование сольватов $[Ln_2(Solv)_n(OAc)_6] \cdot nSolv$ молекулярного строения [30, 31], а пропионаты при кристаллизации из водных растворов могут образовывать сольваты разного состава и структуры в зависимости от конкретного РЗЭ: $[Ln_2(H_2O)_3Prop_6] \cdot 3H_2O$

Рис. 3. Кристаллическая структура [La₂(H₂O)₂Prop₆] (1): выделенный фрагмент (а); полимерный слой (б). Тепловые эллипсоиды соответствуют 30%-ной вероятности нахождения для атомов углерода и 50%-ной вероятности для остальных неводородных атомов. La(1) и La(2) обозначены для наглядности зеленым и синим цветом соответственно. Коды симметрии: i 1 - x, -y, -z; ii ii 2 - x, -y, -t. Атомы водорода этильных групп скрыты для наглядности.

Рис. 4. Кристаллическая структура [La₂(DETA)Prop₆] · MeCN (2): выделенный фрагмент (а); полимерный слой (б). Тепловые эллипсоиды соответствуют 50%-ной вероятности нахождения атома для всех неводородных атомов. Коды симметрии: ${}^{i}-x$, 1-y, 1-z; ${}^{il}1-x$, 1-y, -z. Атомы водорода этильных и этиленовых групп скрыты для наглядности.

цепочечного строения (Ln = Pr [28], Nd [22]), [Dy₂(H₂O)₄Prop₆] · 0.5HProp молекулярного строения [32], а также семейство слоистых соединений [Ln₂(H₂O)₂Prop₆] (Ln = Y, Ho-Lu) [24] (табл. S1). Таким образом, соединение 1 представляет собой первый пример слоистых гидратов пропионатов РЗЭ цериевой подгруппы, но при этом оно не изоморфно соединениям семейства [Ln₂(H₂O)₂Prop₆] (Ln = Y, Ho-Lu) и отличается большим КЧ (Ln³⁺) (9 и 8 для La и Ho-Lu, Y соответственно) и структурной функцией части пропионат-анионов [24].

Кристаллическая структура $[La_2(DETA)Prop_6] \cdot MeCN(2)$


Структура разнолигандного комплекса [La₂(DE-ТА)Prop₆] · MeCN (2) построена из чередующихся биядерных блоков [$La_2(DETA)_2Prop_6$] и [La_2Prop_6] (рис. 4), напоминающих по своему строению димеры $[La_2(H_2O)_2Prop_6]$, обнаруженные в кристаллической структуре 1, однако недостающие позиции в координационной сфере РЗЭ в структурных единицах [La₂(DETA)₂Prop₆] вместо двух молекул растворителя занимают тридентатные лиганды DETA. Таким образом, KY центрального иона повышается с 9 до 10 (координационный полиэдр тетрадекаэдр TD-10 2:6:2, фактор невязки CShM 4.429). Ионы РЗЭ в составе блоков [La₂Prop₆] достраивают свое координационное окружение до KY = 9 ("маффин" MFF-9 1:5:3, фактор невязки CShM 1.659), присоединяя хелатно-мостиковые пропионат-анионы от соседних структурных единиц, что обеспечивает сшивку последних в бесконечные цепи, распространяющиеся вдоль направления $[10\overline{1}]$. Полимерные цепи дополнительно связываются друг с другом слабыми контактами $N-H\cdots O (d(N\cdots O) \sim 3.12-3.42 \text{ Å}, \angle(N-H\cdots O) \sim$

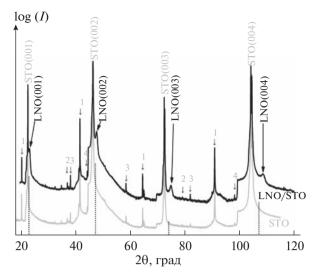
140°—172°) в слои, параллельные плоскости (010). Молекулы MeCN занимают пустоты в межслоевом пространстве.

Любопытно отметить, что структура $\bf 2$ одновременно содержит биядерные блоки $[La_2(L)_n Prop_6]$ двух различных типов, каждый из которых встречается по отдельности в структурах карбоксилатов P3Э. Так, во фрагментах $[La_2(DETA)_2 Prop_6]$ ионы P3Э объединяются парой хелатно-мостиковых лигандов, а в случае блоков $[La_2 Prop_6]$ — парой мостиковых и парой хелатно-мостиковых пропионат-анионов (рис. 4); молекулярные димеры данных типов наблюдались, в частности, в кристаллических структурах сольватов ацетатов P3Э $[Eu_2(H_2O)_4(OAc)_6]$ · nH_2O и $[Eu_2(H_2O)_2(HOAc)_2(OAc)_6]$ · 4HOAc соответственно [31].

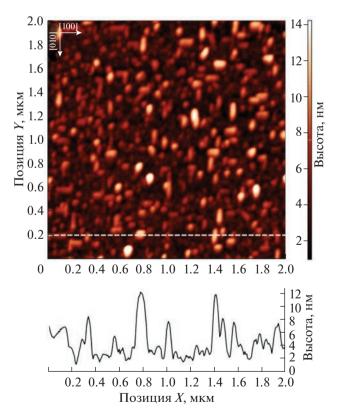
Кристаллическая структура $[Ni(DETA)_2]$ Prop₂ · $2H_2O(3)$

Соединение [Ni(DETA)₂]Prop₂ · $2H_2O$ (3) кристаллизуется в моноклинной сингонии (пр. гр. $P2_1/n$). Симметрически независимая часть элементарной ячейки содержит комплексный катион [Ni(DETA)₂]²⁺, два пропионат-аниона и две молекулы воды. Атом Ni(1) координирует атомы азота двух молекул DETA (N(1), ... N(6); KЧ = 6, d(Ni-N) ~ 2.07–2.16 Å, табл. 2) в меридиональной конфигурации (рис. 5), при этом координационный полиэдр Ni(1) наилучшим образом описывается как искаженный октаэдр (OC-6, фактор невязки CShM 1.508). Все пропионат-анионы и молекулы воды располагаются во внешней сфере и образуют множественные водородные связи O-H···O и N-H···O (d(O···O) ~ 2.70–2.91 Å, \angle (O-

Рис. 5. Выделенный фрагмент кристаллической структуры $[Ni(DETA)_2]$ Prop₂ · $2H_2O$ (3). Тепловые эллипсоиды соответствуют 50%-ной вероятности нахождения атома для всех неводородных атомов. Атомы водорода этильных и этиленовых групп скрыты для наглядности.


H···O) ~ 167°−176°; d(N···O) ~ 2.87−3.06 Å, $\angle(N-H··O)$ ~ 149°−177°), формируя трехмерную упаковку.

Среди комплексов никеля с DETA, содержащих карбоксилат-анионы во внешней сфере, известно соединение [Ni(DETA)₂](HCOO)₂, также содержащее октаэдрические комплексные катионы [Ni(DETA)₂]²⁺ с аналогичной меридиональной конфигурацией [33].


Фазовый состав, морфология и электропроводность тонких пленок никелата лантана

В рамках работы выполнено нанесение тонкой пленки LaNiO₃ на монокристаллическую ориентирующую подложку SrTiO₃(001) (STO). Анализ рентгенограммы полученной пленки выявил наличие только рефлексов (00*l*) фазы LaNiO₃ (рис. 6). Таким образом, нанесенная тонкая пленка является фазово-чистой и (001)-ориентированной. При этом положения рефлексов пленки демонстрируют сдвиг относительно пиков объемной фазы LaNiO₃, что связано с упругой деформацией пленки за счет эпитаксиального взаимодействия с подложкой (растяжение в плоскости подложки приводит к сжатию в направлении нормали к подложке).

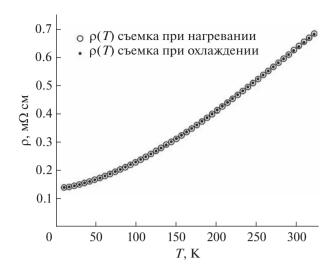

Согласно данным ACM, средняя толщина пленки составляет 46 нм при средней шероховатости 2.3 нм (на области 5×5 мкм²). На карте поверхности отчетливо видны прямоугольные зерна среднего размера 50×120 нм², расположенные под прямым углом друг к другу и ориентированные вдоль кристаллографических осей подложки (рис. 7). Таким образом, можно предположить,

Рис. 6. Рентгенограммы тонкой пленки LaNiO₃/SrTiO₃(001) (кривая LNO/STO) и исходной подложки SrTiO₃(001) (кривая STO), зарегистрированные при ω –2 θ -сканировании. Рефлексы пленки обозначены псевдокубическими индексами LNO (00l), вертикальными прерывистыми линиями показаны положения пиков (00l) для объемной фазы. Рефлексы, обозначенные цифрами 1–4, отвечают отражениям от плоскостей (00l) подложки линий $\mathrm{Cu}K_{\beta}$ (1), $\mathrm{W}L_{\beta2}$ (2), $\mathrm{W}L_{\beta1}$ (3) и $\mathrm{W}L_{\alpha}$ (4).

Рис. 7. Морфология поверхности тонкой пленки LaNiO₃/STO(001): двумерная карта участка поверхности 2×2 мкм² (сверху) и линейное сечение карты (снизу, линия сечения выделена пунктиром). Кристаллографические оси подложки обозначены стрелками.

Рис. 8. Данные измерений температурной зависимости удельного сопротивления для тонкой пленки LaNiO₃/STO(001), записанные при охлаждении и нагревании.

что нанесенная пленка обладает двухосной текстурой. Анализ линейного сечения двухмерной карты поверхности позволил оценить среднюю высоту отдельного зерна, которая составляет ~12 нм.

Температурный ход удельного сопротивления пленки LaNiO₃/STO соответствует металлическому типу проводимости (рис. 8), что типично для объемных и тонкопленочных образцов LaNiO₃ [29, 30].

ЗАКЛЮЧЕНИЕ

Впервые использован подход разнолигандного комплексообразования карбоксилатов лантана и никеля с полиаминами для химического осаждения тонких пленок никелата лантана. Синтезирован моногидрат пропионата лантана, для которого совокупностью методов анализа установлены состав и кристаллическая структура. Определено строение комплексов пропионатов лантана и никеля с диэтилентриамином. Разработана методика, позволяющая получать из растворов на основе карбоксилатов лантана и никеля с диэтилентриамином фазово-чистые ориентированные пленки LaNiO₃, которые демонстрируют металлическую проводимость и могут применяться в качестве проводящих подслоев в многослойных гетероструктурах (например, в полевых транзисторах).

ФИНАНСИРОВАНИЕ РАБОТЫ

Работа выполнена при поддержке гранта РНФ № 22-73-10089. В работе использовано оборудование, приобретенное за счет средств Программы развития Московского университета.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы подтверждают отсутствие конфликта интересов.

ДОПОЛНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Табл. S1. Кристаллические структуры сольватов пропионатов P3 \mathfrak{P} , описанные в литературе; **рис. S1.** Данные спектроскопии импеданса для тонкой пленки LaNiO₃/STO(001).

ИНФОРМАЦИЯ О ВКЛАДЕ АВТОРОВ

Л.М. Цымбаренко и И.А. Мартынова придумали и разработали эксперимент, Д.М. Цымбаренко руководил работой. М.П. Кендин и Р.А. Гашигуллин синтезировали соединения и провели их химический и фазовый анализ. Д.М. Цымбаренко выполнил рентгеноструктурный анализ монокристаллов. А.А. Аносов разработал, создал и поддерживал экспериментальную установку для нанесения тонких пленок. Р.А. Гашигуллин провел эксперименты по нанесению тонких пленок, а также по исследованию их проводящих свойств. Д.М. Цымбаренко провел эксперименты по рентгеновской дифракции и атомно-силовой микроскопии для полученных тонких пленок. М.П. Кендин, Р.А. Гашигуллин и Д.М. Цымбаренко участвовали в обработке данных. М.П. Кендин выполнял главную роль в написании текста статьи при поддержке Д.М. Цымбаренко и Р.А. Гашигуллина. Все авторы подтвердили согласие с итоговым текстом статьи.

СПИСОК ЛИТЕРАТУРЫ

- Eliseeva S. V., Bünzli J.-C.G. // Chem. Soc. Rev. 2010.
 V. 39. № 1. P. 189. https://doi.org/10.1039/B905604C
- Sessoli R., Powell A.K. // Coord. Chem. Rev. 2009. V. 253. № 19–20. P. 2328. https://doi.org/10.1016/j.ccr.2008.12.014
- 3. *Woodruff D.N.*, *Winpenny R.E.P.*, *Layfield R.A.* // Chem. Rev. 2013. V. 113. № 7. P. 5110. https://doi.org/10.1021/cr400018q
- Mishra S., Daniele S. // Chem. Rev. 2015. V. 115. № 16. P. 8379. https://doi.org/10.1021/cr400637c
- 5. Schneller T., Waser R., Kosec M. et al. // Chemical Solution Deposition of Functional Oxide Thin Films. Vienna: Springer Vienna, 2013. 796 p. https://doi.org/10.1007/978-3-211-99311-8
- Vermeir P., Cardinael I., Bäcker M. et al. // Supercond. Sci. Technol. 2009. V. 22. № 7. P. 075009. https://doi.org/10.1088/0953-2048/22/7/075009
- 7. *Kendin M., Tsymbarenko D.* // J. Anal. Appl. Pyrolysis. 2019. V. 140. P. 367. https://doi.org/10.1016/j.jaap.2019.04.016
- 8. *Rasi S., Silveri F., Ricart S. et al.* // J. Anal. Appl. Pyrolysis. 2019. V. 140. P. 312. https://doi.org/10.1016/j.jaap.2019.04.008

- 9. *Sheehan C., Jung Y., Holesinger T. et al.* // Appl. Phys. Lett. 2011. V. 98. № 7. P. 071907. https://doi.org/10.1063/1.3554754
- 10. *Schwartz R.W.* // Chem. Mater. 1997. V. 9. № 11. P. 2325. https://doi.org/10.1021/cm970286f
- 11. *Tsymbarenko D.M.*, *Martynova I.A.*, *Malkerova I.P. et al.* // Russ. J. Coord. Chem. 2016. V. 42. № 10. P. 662. https://doi.org/10.1134/S1070328416100043
- Grivel J.-C. // J. Anal. Appl. Pyrolysis. 2010. V. 89.
 № 2. P. 250.
 https://doi.org/10.1016/j.jaap.2010.08.011
- Grivel J.C. // J. Therm. Anal. Calorim. 2012. V. 109.
 № 1. P. 81.
 https://doi.org/10.1007/s10973-011-1745-9
- 14. *Grivel J.C.* // J. Therm. Anal. Calorim. 2014. V. 115. № 2. P. 1253. https://doi.org/10.1007/s10973-013-3467-7
- 15. *Grivel J.C.* // J. Anal. Appl. Pyrolysis. 2013. V. 101. P. 185. https://doi.org/10.1016/j.jaap.2013.01.011
- Petříček V., Dušek M., Palatinus L. // Z. Kristallogr. Cryst. Mater. 2014. V. 229. № 5. P. 345. https://doi.org/10.1515/zkri-2014-1737
- 17. Sheldrick G.M. // SHELXTL Ver. 5.10, Structure Determination Software Suite. Madison, WI, USA: Bruker AXS, 1998.
- 18. *Sheldrick G.M.* // Acta Crystallogr., Sect. A: Found. Crystallogr. 2008. V. 64. № 1. P. 112. https://doi.org/10.1107/S0108767307043930
- 19. *Sheldrick G.M.* // Acta Crystallogr., Sect. C: Struct. Chem. 2015. V. 71. № 1. P. 3. https://doi.org/10.1107/S2053229614024218
- 20. *Krause L., Herbst-Irmer R., Sheldrick G.M. et al.* // J. Appl. Crystallogr. 2015. V. 48. № 1. P. 3. https://doi.org/10.1107/S1600576714022985
- Casanova D., Llunell M., Alemany P. et al. // Chem. A Eur. J. 2005. V. 11. № 5. P. 1479. https://doi.org/10.1002/chem.200400799

- Scales N., Zhang Y., Bhadbhade M. et al. // Polyhedron. 2015. V. 102. P. 130. https://doi.org/10.1016/j.poly.2015.07.065
- 23. *Grivel J.C., Zhao Y., Tang X. et al.* // J. Anal. Appl. Pyrolysis. 2020. V. 150. № August. P. 104898. https://doi.org/10.1016/j.jaap.2020.104898
- 24. *Kendin M., Tsymbarenko D.* // Cryst. Growth Des. 2020. V. 20. № 5. P. 3316. https://doi.org/10.1021/acs.cgd.0c00110
- 25. *Martynova I.A., Tsymbarenko D.M., Kuz'mina N.P.* // Russ. J. Coord. Chem. 2014. V. 40. № 8. P. 565. https://doi.org/10.1134/S1070328414080077
- 26. *Buβkamp H., Deacon G.B., Hilder M. et al.* // CrystEng-Comm. 2007. V. 9. № 5. P. 394. https://doi.org/10.1039/B700980A
- Tsymbarenko D., Martynova I., Grebenyuk D. et al. //
 J. Solid State Chem. 2018. V. 258. № December. 2017.
 P. 876.
 https://doi.org/10.1016/j.jssc.2017.12.024
- 28. *Dieters D., Meyer G.* // Z. Anorg. Allg. Chem. 1996. V. 622. № 2. P. 325. https://doi.org/10.1002/zaac.19966220220
- 29. *Grebenyuk D., Ryzhkov N., Tsymbarenko D.* // J. Fluor. Chem. 2017. V. 202. № September. P. 82. https://doi.org/10.1016/j.jfluchem.2017.08.014
- 30. *Kepert C.J., Wei-Min L., Junk P.C. et al.* // Aust. J. Chem. 1999. V. 52. № 6. P. 437. https://doi.org/10.1071/CH98041
- 31. *Gomez Torres S., Pantenburg I., Meyer G.* // Z. Anorg. Allg. Chem. 2006. V. 632. № 12–13. P. 1989. https://doi.org/10.1002/zaac.200600154
- 32. Zhang Y., Bhadbhade M., Scales N. et al. // J. Solid State Chem. 2014. V. 219. P. 1. https://doi.org/10.1016/j.jssc.2014.07.007
- 33. *Rühlig K., Abylaikhan A., Aliabadi A. et al.* // Dalton Trans. 2017. V. 46. № 12. P. 3963. https://doi.org/10.1039/C6DT04556A