= ФИЗИЧЕСКАЯ ХИМИЯ РАСТВОРОВ =

УЛК 544.6.018.462

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА РАСТВОРОВ *БИС*-(ТРИФТОРМЕТАНСУЛЬФОНИЛ)ИМИДА ЛИТИЯ В СУЛЬФОЛАНЕ

© 2024 г. Л.В. Шеина^{а, *}, Е.В. Карасева^а, В.С. Колосницын^а

Уфимский федеральный исследовательский центр РАН, Уфимский Институт химии, Уфа, Россия

*E-mail: sheina.l.v@gmail.com

Поступила в редакцию 17.07.2023 После доработки 15.08.2023 Принята к публикации 17.08.2023

Изучены физико-химические свойства (электропроводность, вязкость и плотность в температурном диапазоне 30-50 °C), электрохимическая и термическая устойчивости растворов бис-(трифторметансульфонил)имида лития в сульфолане в диапазоне концентраций от 0.001 до 1.89 М. Показано, что растворы бис-(трифторметансульфонил)имида лития в сульфолане обладают высокой электрохимической устойчивостью (5.75 В отн. Li/Li⁺) и умеренной электропроводностью (2.75×10^{-3} Ом⁻¹·см⁻¹ при 30 °C для 1 М раствора), соизмеримыми с сульфолановыми растворами гексафторфосфата лития.

Строение и транспортные свойства сульфолановых растворов δuc -(трифторметансульфонил) имида лития определяются их концентрацией. В разбавленных растворах δuc -(трифторметансульфонил) имид лития слабо ассоциирован. По мере увеличения концентрации степень электролитической диссоциации $LiN(SO_2CF_3)_2$ первоначально уменьшается, а затем возрастает. Увеличение степени электролитической диссоциации δuc -(трифторметансульфонил) имида лития с ростом концентрации объяснено образованием ионных тройников и более сложных ионных ассоциатов. С увеличением температуры константа ассоциации и предельная эквивалентная электропроводность $LiN(SO_2CF_3)_2$ в сульфолане возрастают вследствие снижения степени самоассоциации и разрушения структуры растворителя.

Особенностью сульфолановых растворов δuc -(трифторметансульфонил)имида лития является склонность к образованию устойчивых переохлажденных растворов.

Ключевые слова: бис-(трифторметансульфонил)имид лития, сульфолан, электролитные растворы, литиевые аккумуляторы.

DOI: 10.31857/S0044453724030099, EDN: QPNHGG

ВВЕДЕНИЕ

Важной задачей создания электрохимических накопителей энергии с лучшими энергетическими характеристиками по сравнению с существующими является разработка электролитных систем, обладающих высокой электропроводностью, химической и электрохимической стабильностью, безопасностью, находящихся в жидкофазном состоянии в широком температурном диапазоне.

Свойства электролитных систем определяются свойствами электролитных солей

и растворителей. Перспективным классом литиевых солей для электролитов литий-ионных (ЛИА) и литиевых аккумуляторов (ЛА) являются имиды лития, такие как $\mathit{6uc}$ -фторсульфонилимид (LiN(SO₂F)₂), $\mathit{6uc}$ -(трифторметансульфонил)имид (LiN(SO₂CF₃)₂) и $\mathit{6uc}$ -(перфторэтилсульфонил)имид (LiN(SO₂CF₂CF₃)₂) [1–3]. В отличие от литиевых солей с комплексными анионами, имидные анионы имеют значительно большие размеры, чем размеры анионов наиболее широко используемых солей — LiPF₆, LiClO₄ и LiBF₄, что обеспечивает хорошую растворимость и высокую степень

электролитической диссоциации имидов лития в апротонных диполярных растворителях (АДР) различной природы [4, 5]. Большой интерес представляет бис-(трифторметансульфонил) имид лития (LiTFSI). Благодаря слабокоординирующему аниону с сильно делокализованной плотностью заряда, бис-(трифторметансульфонил)имид лития хорошо диссоциирует в растворителях даже с невысокими значениями диэлектрической проницаемости, обладает высокой термостабильностью и устойчивостью к гидролизу [2, 4]. Недостатком электролитных растворов на основе этой соли является коррозия алюминия (материала токового коллектора положительных электродов ЛИА) при высоких значениях потенциалов (>3.8 В отн. Li/Li⁺ электрода сравнения) [6, 7]. Поэтому использование бис-(трифторметансульфонил)имида лития в электролитных растворах для ЛИА проблематично. Однако бис-(трифторметансульфонил) имид лития может быть востребован в электролитных системах низковольтных литиевых аккумуляторов, например Li-S и Li-O₂ [1, 8]. В настоящее время широко изучены транспортные и электрохимические свойства растворов LiTFSI в карбонатных растворителях [9-12], ацетонитриле [13] и глимах [14, 15].

Перспективными АДР для электролитов ЛИА и ЛА являются сульфоны. Интерес к сульфонам как электролитным растворителям объясняется, прежде всего, их высокой анодной (окислительной) устойчивостью [3, 16–20]. Так, для растворов LiTFSI в сульфолане, этилметилсульфоне и этил-цис-бутилсульфоне предел анодной устойчивости составляет около 5.8 В (отн. Li/Li⁺) [21–23], в линейных и циклических сульфонах, содержащих сложноэфирные функциональные группы (бифункциональные сульфоны), — от 4.9 до 5.6 В на Рt электроде (отн. Li/Li⁺) [24]. В последнее время исследуются электролитные растворы LiTFSI в сульфонах [15, 25-27], в смесях сульфонов с карбонатами [28] и глимами [8], а также полимерные [29] и композитные [30] электролиты, содержащие сульфоны в качестве пластификаторов.

Еще одним свойством, выгодно отличающим сульфоновые электролиты от электролитных систем на основе других АДР, является высокая термическая устойчивость. Большинство сульфонов обладают высокими температурами кипения и воспламенения (для сульфолана 287.3 °C и 165 °C соответственно [31]). Темпе-

ратура воспламенения 0.75 m раствора LiTFSI в сульфолане равна 151 °C [25]. Поэтому электролитные системы на основе сульфонов в сочетании с термически стабильными солями относятся к безопасным и невоспламеняемым [3].

Несмотря на большой интерес, до сих пор экспериментальные исследования физико-химических свойств электролитной системы LiTFSI сульфолан являются разрозненными и неполными. Недостаточно исследованной остается область разбавленных растворов, поэтому сведения о степени ассоциации бис-(трифторметансульфонил)имида лития в сульфонах носят в значительной степени предположительный характер. Поэтому целью работы было подробное исследование основных физико-химических свойств (электропроводности, вязкости, плотности, термической и электрохимической устойчивости) растворов бис-(трифторметансульфонил)имида лития в сульфолане в широком концентрационном и температурном диапазонах.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали тетраметиленсульфон (сульфолан) (Tetramethylene sulfone, Sigma Aldrich, 99%), который очищали вакуумной перегонкой. Buc -(трифторметансульфонил)имид лития (lithium bis(trifluoromethanesulfonyl)imide, anhydrous, 99.99%, Sigma-Aldrich) использовали без дополнительной очистки и осушки. Электролитные растворы готовили объемно-весовым методом в перчаточном боксе в среде осушенного воздуха (точка росы -56 °C). Подробная методика приготовления электролитных растворов представлена в дополнительной информации¹.

Содержание воды в исходных компонентах и электролитных растворах устанавливали методом кулонометрического титрования в среде реактива Фишера с использованием автоматического титратора Titroline®7500 KF trace (SI Analytics, Германия). Содержание воды в 1 М растворе LiTFSI в сульфолане по результатам кулонометрического титрования составляло 25±4 ppm.

Термогравиметрические исследования твердых образцов и электролитных растворов

¹ Дополнительные материалы к статье размещены на сайтах https://link.springer.com/ (английская версия) и https://elibrary.ru (русская версия).

проводили на модернизированном дериватографе MOM-1000 системы F. Paulik, J. Paulik, L. Erdei (Венгрия) при скорости нагрева 5 К/мин.

ДСК исследования проводили с помощью дифференциального сканирующего калориметра DSC 214 Polyma (Netzsch, Германия) в атмосфере аргона в температурном диапазоне от -70 до +50 °C при скорости охлаждения/нагревания 1 К/мин. Съемку термограмм ДСК осуществляли следующим образом. Образец нагревали от комнатной температуры до +50 °C, выдерживали в изотермических условиях 30 минут, затем охлаждали до -70 °C и выдерживали при этой температуре 1 час. После охлаждения образец вновь нагревали до +50 °C и после 30 минутной выдержки операцию сканирования температуры повторяли. Таким образом операцию сканирования температуры проводили 3 раза. При обработке термограмм ДСК за температуру солидуса принимали температуру начала первого эндо-пика, а за температуру ликвидуса — температуру максимума второго эндо-пика на кривых нагревания, согласно [32-34].

Электрохимическую устойчивость электролитных растворов изучали методом циклической вольтамперометрии (ЦВА) в трехэлектродной стеклянной ячейке с платиновым рабочим электродом ($S = 0.1 \text{ cm}^2$) в диапазоне потенциалов от -0.1 до 6 В относительно Li/Li^+ электрода сравнения при температуре 30 °C. Скорость развертки потенциала составляла 2 мВ/с.

Физико-химические свойства электролитных растворов исследовали аналогично работе [35]. Удельную электропроводность определяли в кондуктометрических ячейках с черненными платиновыми электродами, откалиброванных по растворам КСІ, кинематическую вязкость – в вискозиметрах Уббелоде, модернизированных для работы с безводными растворами, плотность пикнометрическим методом.

Динамическую вязкость растворов рассчитывали из значений кинематической вязкости и плотности по формуле:

$$\eta = \nu \rho$$

где v — кинематическая вязкость раствора, сст; ρ — плотность раствора, г/см³.

Ошибки определения физико-химических свойств составляли 0.5-1.0%.

Предельную эквивалентную электропроводность (λ_0) и константы ассоциации (K_{acc}) оценивали из эквивалентной электропроводности разбавленных электролитных растворов методом Краусса — Брея [36].

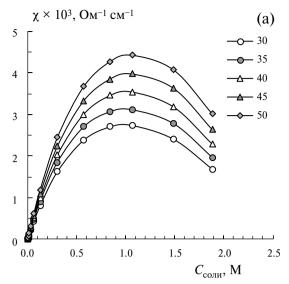
Степень электролитической диссоциации (α) сульфолановых растворов оценивали как отношение произведения эквивалентной электропроводности на вязкость к произведению предельной эквивалентной электропроводности на вязкость растворителя:

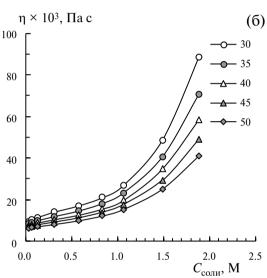
$$\alpha = \frac{\lambda_C \cdot \eta_C}{\lambda_0 \cdot \eta_0}, \tag{1}$$

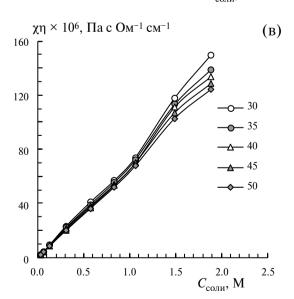
где $\lambda_{\mathcal{C}}$ — эквивалентная электропроводность раствора концентрации C; η_C – динамическая вязкость раствора концентрации C; λ_0 — эквивалентная электропроводность при бесконечном разбавлении; η_0 – динамическая вязкость растворителя.

Энергии активации электропроводности и вязкого течения рассчитывали по уравнениям Аррениуса:

$$\eta = \eta_0 \exp \frac{1}{R} \left[\frac{E_{a_{\eta}}}{T} \right], \qquad (2)$$


$$\chi = \chi_0 \exp \frac{1}{R} \left[\frac{E_{a_{\chi}}}{T} \right]. \qquad (3)$$


$$\chi = \chi_0 \exp \frac{1}{R} \left[\frac{E_{a_{\chi}}}{T} \right]. \tag{3}$$


ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Физико-химические и электрохимические свойства сульфолановых растворов бис-(трифторметансульфонил)имида лития

Изотермы электропроводности, вязкости и плотности растворов бис-(трифторметансульфонил)имида лития в сульфолане представлены на рис. 1 и в табл. 1S в Дополнительных материалах. На изотермах электропроводности сульфолановых растворов LiTFSI в области концентраций соли 0.9-1.1 моль/л наблюдаются максимумы, положение которых практически не зависит от температуры (рис. 1а). Изотермы динамической вязкости нелинейны – резкое увеличение вязкости происходит при концентрациях соли 0.8-1.1 М (рис. 1б). Изотермы коррегированной электропроводности (удельной электропроводности, приведенной к единичной

Рис. 1. Изотермы удельной электропроводности (а), динамической вязкости (б) и коррегированной электропроводности (в) растворов $LiN(SO_2CF_3)_2$ в сульфолане. Температура указана в легендах.

вязкости) практически линейны до концентрации соли 1.0 М, при более высоких концентрациях на изотермах коррегированной электропроводности наблюдаются изгибы (рис. 1в).

С ростом температуры удельная электропроводность растворов увеличивается, а вязкость уменьшается. Электропроводность, исправленная на вязкость, с увеличением температуры снижается. Линейность температурных зависимостей удельной электропроводности и вязкости сульфолановых растворов LiTFSI в диапазоне 30-50 °C в координатах уравнения Аррениуса позволила рассчитать энергии активации электропроводности, вязкого течения и трансмиссионные коэффициенты (табл. 1). Как следует из полученных данных, значения энергий активации электропроводности, вязкого течения и трансмиссионные коэффициенты в зависимости от концентрации раствора изменяются сложным образом (рис. 2). Увеличение концентрации соли приводит к слабо нелинейному возрастанию энергии активации удельной электропроводности. Энергия активации вязкого течения с ростом концентрации соли первоначально увеличивается, затем стабилизируется и вновь начинает возрастать при достижении концентрации LiTFSI около 1 M. Концентрационная зависимость трансмиссионного коэффициента антибатна концентрационной зависимости энергии активации вязкого течения.

Из изотерм молярной электропроводности разбавленных сульфолановых растворов LiTFSI методом Краусса — Брея были оценены значения констант ассоциации и предельной молярной электропроводности (табл. 2). Как следует из расчетов, с увеличением температуры предельная эквивалентная электропроводность (λ_0) растворов LiTFSI и константа ассоциации соли ($K_{\rm acc}$) увеличиваются, а коррегированная эквивалентная электропроводность уменьшается.

Расчетные значения степени диссоциации с ростом концентрации соли первоначально снижаются, затем при достижении концентрации 0.6 M (мольное отношение соль: сульфолан ≈ 16) начинают возрастать, достигая максимума при концентрации примерно 1.5 M (мольное отношение соль: сульфолан ≈ 6) (рис. 3).

Из формы изотерм коррегированной электропроводности следует, что основной причиной появления максимумов на изотермах удельной электропроводности является увеличение

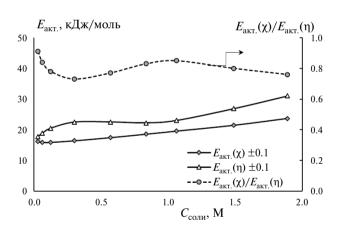

коэффициенты растворов En (302 ct 3/2 в сульфоланс в температурном дианазоне от 30 до 30 °C											
Параметр	$C_{ ext{conu}}$, М										
	0.031	0.063	0.126	0.303	0.570	0.836	1.064	1.490	1.890		
n	338.5	165.6	82.1	33.2	17.0	11.1	8.4	5.5	4.1		
$E_{\text{akt}}(\chi) \pm 0.1$	16.2	16.0	16.0	16.5	17.5	18.6	19.6	21.5	23.7		
$E_{\text{akt}}(\eta) \pm 0.1$	17.8	18.9	20.5	22.5	22.6	22.3	23.1	27.0	31.1		
$E_{\rm akt}(\chi)/E_{\rm akt}(\eta)$	0.91	0.84	0.78	0.73	0.77	0.83	0.85	0.80	0.76		

Таблица 1. Энергии активации электропроводности и вязкого течения (кДж моль $^{-1}$) и трансмиссионные коэффициенты растворов LiN(SO₂CF₃)₂ в сульфолане в температурном диапазоне от 30 до 50 °C

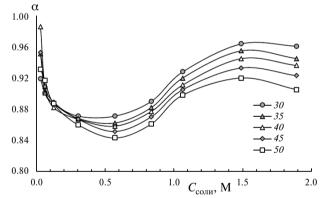

Обозначения: n — сольватное число.

Таблица 2. Значения предельной эквивалентной электропроводности (λ_0) и констант ассоциации (K_{acc}) LiN(SO₂CF₃)₂ в сульфолане

Поморожата	T, °C							
Показатель	30	35	40	45	50			
$\lambda_{\rm o} \times 10^4$, ${\rm Om}^{-1} {\rm m}^2 {\rm mon} {\rm b}^{-1}$	7.4	8.4	9.4	10.4	11.4			
$\lambda_{o} \cdot \eta_{o} \times 10^{6},$ $O M^{-1} M^{2} M O Л Б^{-1} \cdot \Pi a \cdot c$	75.9	75.9	75.4	74.4	73.0			
K _{acc}	1.67	1.75	1.79	1.82	1.85			

Рис. 2. Концентрационные зависимости энергий активации электропроводности, вязкого течения и трансмиссионных коэффициентов растворов $\text{LiN}(\text{SO}_2\text{CF}_3)_2$ в сульфолане.

Рис. 3. Концентрационные зависимости степени электролитической диссоциации (α) LiN(SO₂CF₃)₂ в сульфолане при различных температурах. Температура указана в легенде.

вязкости электролитных растворов с ростом концентрации соли. Возможной причиной уменьшения коррегированной электропроводности может быть увеличение степени ассоциации LiTFSI из-за разрушения структуры растворителя с ростом температуры.

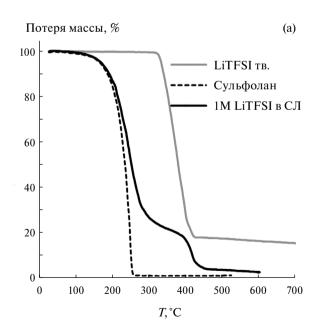
Наличие максимумов на изотермах удельной электропроводности, сложная форма концентрационных зависимостей энергий активации

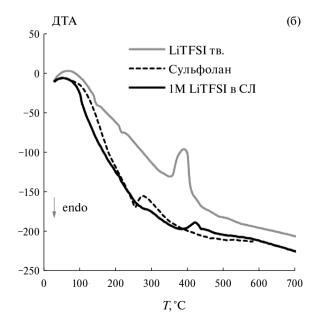
вязкого течения и трансмиссионных коэффициентов указывают на существенное влияние концентрации соли на строение образующихся сульфолановых растворов LiTFSI.

Сульфолановые растворы $LiN(SO_2CF_3)_2$ обладают широким окном электрохимической устойчивости. Так, по данным циклической вольтамперометрии, анодная устойчивость 1 M раствора $LiN(CF_3SO_2)_2$ в сульфолане

Рис. 4. Циклическая вольтамперограмма 1 M раствора $LiN(SO_2CF_3)_2$ в сульфолане (30 °C) на Ртэлектроде относительно Li/Li+. Скорость развертки потенциала 2 мВ/с.

на платиновом электроде составила 5.75 В относительно литиевого электрода сравнения (рис. 4).


Термические свойства сульфолановых растворов бис-(трифторметансульфонил)имида лития

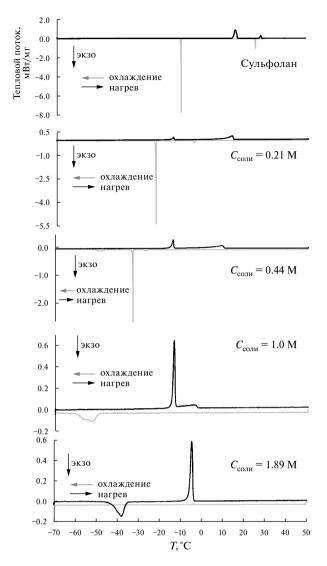

Бис-(трифторметансульфонил)имид лития обладает высокой термической устойчивостью, его термодеструкция начинается при температуре более 320 °C, осуществляется в одну стадию и сопровождается сильным экзотермическим эффектом (рис. 5). Сульфолан является высококипящей жидкостью и в условиях

термогравиметрического анализа испаряется, не подвергаясь термохимической деструкции. При нагреве 1 М сульфоланового раствора LiN(SO₂CF₃)₂ первоначально происходит испарение сульфолана и лишь затем термодеструкция соли. Следует отметить, что температура испарения сульфолана из солевого раствора выше, чем чистого сульфолана, и разница между температурами испарения индивидуального сульфолана и сульфолана из раствора увеличивается по мере увеличения концентрации соли. Судя по форме кривых ДТА, какого-либо химического взаимодействия между сульфоланом и анионом соли при нагреве не происходит.

Низкотемпературные свойства сульфолановых растворов бис-(трифторметансульфонил)имида лития

При нормальных условиях сульфолан находится в кристаллическом состоянии. На кривой нагрева сульфолана (рис. 6) наблюдаются два эндотермических эффекта, соответствующих переходу из кристаллической фазы в мезоморфную (14.8 °C) и плавлению мезоморфной фазы (27.7 °C) [34, 37—39]. На кривых охлаждения сульфолана также наблюдаются два тепловых эффекта, однако их температуры существенно отличаются от температур тепловых эффектов на кривых нагрева. Первый экзотермический эффект на кривых охлаждения наблюдается

Рис. 5. Кривые потери массы (а) и тепловых эффектов (ДТА) (б) LiTFSI (тв.), сульфолана и 1 M раствора LiTFSI в сульфолане (СЛ). Скорость нагрева – 5 °C/мин.


при температуре 25 °C, а второй — при температуре —10 °C. Вероятно, первый экзотермический эффект соответствует переходу сульфолана из жидкого состояния в мезоморфную фазу, а второй — из мезоморфной фазы в кристаллическую. Существенные различия в температурах фазовых переходов при нагреве и охлаждении сульфолана указывают на его склонность к образованию переохлажденных состояний.

На термограммах ДСК разбавленных сульфолановых растворов LiTFSI также наблюдается по два пика, соответствующих плавлению кристаллической и мезоморфной фаз сульфолана (рис. 6 и табл. 2S в Дополнительной информации). По мере увеличения концентрации соли температуры плавления кристаллической и мезоморфоной фаз уменьшаются. Растворы LiTFSI в сульфолане также сохраняют склонность к образованию переохлажденных состояний. Интересные свойства проявляет высококонцентрированный (1.89 М) раствор LiTFSI. На кривых охлаждения этого раствора никаких тепловых эффектов не наблюдается (рис. 6). Однако на кривых нагрева первоначально, при температуре -45.5 °C, проявляется экзотермический эффект, а затем при температуре -6.3 °C - эндотермический. Из полученных экспериментальных данных следует, что с ростом концентрации сульфолановых растворов LiTFSI увеличивается их склонность к образованию переохлажденных состояний.

ЗАКЛЮЧЕНИЕ

Проведенное исследование показало, что растворы бис-(трифторметансульфонил)имида лития в сульфолане обладают высокой термической стабильностью, электрохимической устойчивостью в широком диапазоне электродных потенциалов и умеренной электропроводностью, соизмеримой с электропроводностью сульфолановых растворов литиевых солей с объемными анионами, например, такими как перхлорат и гексафторфосфат лития.

Строение и транспортные свойства сульфолановых растворов δuc -(трифторметансульфонил) имида лития в существенной мере определяются их концентрацией. В разбавленных растворах δuc -(трифторметансульфонил)имид лития слабо ассоциирован. По мере увеличения концентрации растворов степень электролитической диссоциации $LiN(SO_2CF_3)_2$ первоначально

Рис. 6. Термограммы ДСК сульфолана и растворов $LiN(SO_2CF_3)$, в сульфолане.

уменьшается, а затем начинает возрастать. Увеличение степени электролитической диссоциации $\text{LiN}(\text{SO}_2\text{CF}_3)_2$ с ростом концентрации растворов может быть объяснено образованием ионных тройников и более сложных ионных ассоциатов.

Механизм ионного переноса также в существенной мере зависит от концентрации растворов. В разбавленных растворах ионный перенос в основном осуществляется по стоксовскому механизму. С увеличением концентрации растворов $LiN(SO_2CF_3)_2$ происходит изменение механизма ионного переноса. Судя по характеру изменения трансмиссионных коэффициентов, с увеличением концентрации соли вклад эстафетного механизма ионного

переноса первоначально увеличивается, затем снижается и вновь начинает увеличиваться при концентрации соли более 1 М.

Поскольку сульфолан, как и большинство высокополярных растворителей, является ассоцированным растворителем, температура оказывает существенное влияние на термодинамические и транспортные свойства растворов $LiN(SO_2CF_3)_2$. Увеличение температуры приводит к возрастанию констант ассоциации и предельной эквивалентной электропроводности растворов $LiN(SO_2CF_3)_2$ вследствие снижения степени самоассоциации и разрушения структуры сульфолана.

Особенностью сульфолановых растворов *бис*-(трифторметансульфонил)имида лития является склонность к образованию переохлажденных растворов.

Таким образом, по совокупности физико-химических, электрохимических и термических свойств растворы бис-(трифторметансульфонил) имида лития могут рассматриваться как перспективные электролитные системы для среднетемпературных энергоемких литий-ионных и литиевых накопителей электрической энергии.

Работа выполнена в рамках государственного задания по теме № 122031400252-2 «Электродные материалы и электролитные системы для перспективных накопителей энергии», на оборудовании ЦКП «Химия» УфИХ УФИЦ РАН и РЦКП «Агидель» УФИЦ РАН.

Настоящая статья не содержит каких-либо исследований с использованием животных и людей в качестве объектов.

Авторы заявляют об отсутствии конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Younesi R., Veith G.M., Johansson P. et al. // Energy Environ. Sci. 2015. V. 8. P. 1905. https://doi.org/10.1039/C5EE01215E
- 2. *Бушкова О.В., Ярославцева Т.В., Добровольс-кий Ю.А.* // Электрохимия. 2017. Т. 53. № 7. С. 763. [*Bushkova O.V., Yaroslavtseva T.V., Dobrovolsky Y.A.* // Russ. J. Electrochem. 2017. V. 53. № 7. P. 677. https://doi.org/10.7868/S0424857017070015]
- Flamme B., Garcia G.R., Weil M. et al. // Green Chem. 2017. V. 19. P. 1828. https://doi.org/10.1039/ C7GC00252A

- 4. *Xu K.* // Chemical Reviews. 2004. V. 104. № 10. P. 4303. https://doi.org/10.1021/cr030203g
- 5. *Zhang H., Han H., Cheng X. et al.* // J. Power Sources. 2015. V. 296. P. 142. http://dx.doi.org/10.1016/j. jpowsour.2015.07.026
- Krause L.J., Lamanna W., Summerfield J. et al. // J. Power Sources. 1997. V. 68. P. 320. https://doi. org/10.1016/S0378-7753(97)02517-2
- Abouimrane A., Ding J., Davidson I.J. // J. Power Sources. 2009. V. 189. P. 693. http://doi:10.1016/ j.jpowsour.2008.08.077
- 8. *Yoon S., Lee Y.-H., Shin K.-H., Cho S.B., Chung W.J.* // Electrochim. Acta. 2014. V. 145. P. 170. http://dx.doi.org/10.1016/j.electacta.2014.09.007
- 9. *Shigenobu K., Sudoh T., Tabuchi M. et al.* // J. Non-Cryst. Solids: X. 2021. V. 11–12. 100071. https://doi.org/10.1016/j.nocx.2021.100071
- 10. *Reddy V.P., Smart M.C., Chin K.B. et al.* // Electrochem. Solid-State Lett. 2005. V. 8. № 6. A294. doi:10.1149/1.1904466
- Han H.-B., Zhou S.-S., Zhang D.-J. et al. // J. Power Sources. 2011. V. 196. P. 3623. DOI: 10.1016/j. jpowsour.2010.12.040
- 12. *Dahbi M., Ghamouss F., Tran-Van F. et al.* // J. Power Sources. 2011. V. 196. P. 9743. DOI: 10.1016/j.ipowsour.2011.07.071
- 13. *Seo D.M.*, *Borodin O.*, *Balogh D. et al.* // J. Electrochem. Soc. 2013. V. 160. № 8. A1061. DOI: 10.1149/2.018308jes
- 14. Horwitz G., Rodriguez C., Factorovich M., Corti H.R. // J. Phys. Chem. C. 2019. V. 123. P. 12081. https://doi.org/10.1021/acs.jpcc.9b00864
- 15. *Shigenobu K., Dokko K., Watanabe M., Ueno K. //* Phys. Chem. Chem. Phys. 2020. V. 22. P. 15214. DOI: 10.1039/d0cp02181d
- 16. *Maeyoshi Y., Ding D., Kubota M. et al.* // ACS Appl. Mater. Interfaces. 2019. V. 1. № 29. P. 25833. https://doi.org/10.1021/acsami.9b05257
- 17. *Wu F., Zhou H., Bai Y. et al.* // ACS Appl. Mater. Interfaces. 2015. V. 7. № 27. P. 15098. https://doi.org/10.1021/acsami.5b04477
- 18. *Flamme B.*, *Światowska J.*, *Haddad M. et al.* // J. Electrochem. Soc. 2020. V. 167. 070508. DOI: 10.1149/1945-7111/ab63c3
- 19. *Wu W.*, *Bai Y.*, *Wang X.*, *Wu C.* // Chin. Chem. Lett. 2021. V. 32. P. 1309. https://doi.org/10.1016/j.cclet.2020.10.009
- Su C.-C., He M., Amine R. et al. // Nano Energy.
 V. 83. 105843. https://doi.org/10.1016/j.nanoen.2021.105843
- 21. *Xu K.*, *Angell C.A.* // J. Electrochem. Soc. 2002. V. 149. № 7. A920. DOI: 10.1149/1.1483866

- 22. Xu K., Angell C.A. // J. Electrochem. Soc. 1998. V. 145. 31. Hess S., Wohlfahrt-Mehrens M., Wachtler M. // J. № 4. L70. DOI: 10.1149/1.1838419
- 23. Abouimrane A., Belharouak I., Amine K. // Electrochem. Commun. 2009. V. 11. P. 1073. DOI: 10.1016/j.elecom.2009.03.020
- 24. Flamme B., Haddad M., Phansavath P. et al. // Chem. ElectroChem. 2018. V. 5. P. 2279. DOI: 10.1002/ celc.201701343
- 25. Hofmann A., Kaufmann C., Müller M., Hanemann T. // Int. J. Mol. Sci. 2015. V. 16. P. 20258. DOI:10.3390/ ijms160920258
- 26. Ugata Y., Tatara R., Mandai T. et al. // ACS Appl. Energy Mater. 2021. V. 4. P. 1851. https://dx.doi. org/10.1021/acsaem.0c02961
- 27. Ugata Y., Shigenobu K., Tatara R. et al. // Phys. Chem. Chem. Phys. 2021. V. 23. P. 21419. https://doi. org/10.1039/D1CP02946K
- 28. Zhang T., Porcher W., Paillard E. // J. Power Sources. 2018. V. 395. P. 212. https://doi.org/10.1016/j. jpowsour.2018.05.077
- 29. Каюмов Р.Р., Шмыглева Л.В., Евщик Е.Ю. и др. // Электрохимия. 2021. T. 57. № 8. C. 507. DOI: 10.31857/S0424857021060049 [Kayumov R.R., Shmygleva L.V., Evshchik E.Y. et al. // Russ. J. Electrochem. 2021. V. 57. № 8. P. 911. DOI: 10.1134/ S1023193521060045]
- 30. Ock J.-Y., Fujishiro M., Ueno K. et al. // ACS Omega. 2021. V. 6. P. 16187. DOI: 10.1021/acsomega.1c02161

- Electrochem. Soc. 2015. V. 162. № 2. A3084. DOI: 10.1149/2.0121502jes
- 32. Ding M.S., Xu K., Jow T.R. // J. Therm. Anal. Calorim. 2000. V. 62. P. 177. DOI: 10.1023/A:1010175114578
- 33. Rycerz L. // J. Therm. Anal. Calorim. 2013. V. 113. P. 231. DOI: 10.1007/s10973-013-3097-0
- 34. Резницких О.Г., Истомина А.С., Борисевич С.С. и др. // Журн. физ. химии. 2021. Т. 95. № 6. С. 867. [Reznitskikh O.G., Istomina A.S., Borisevich S.S. et al. // Rus. J. of Phys. Chem. A. 2021. V. 95. № 6. P. 1121. DOI: 10.1134/S0036024421060224].
- 35. Шеина Л.В., Иванов А.Л., Карасева Е.В., Колоснииын В.С. // Электрохимия. 2021. Т. 57. № 12. С. 743. [Sheina L.V., Ivanov A.L., Karaseva E.V., Kolosnitsvn V.S. // Russ. J. Electrochem. 2021. V. 57. № 12. P. 1138. DOI: 10.1134/S1023193521120065].
- 36. Фиалков Ю.Я., Житомирский А.Н., Тарасенко Ю.А. Физическая химия неводных растворов. Л.: Химия, 1973. 376 с.
- 37. Monica M.D., Jannelli L., Lamanna U. // J. Phys. Chem. 1968. V. 72. № 3. P. 1068. DOI: org/10.1021/ i100849a050.
- 38. Jannelli L., Lopez A., Jalenti R., Silvestri L. // J. Chem. Eng. Data. 1982. V. 27. P. 28. DOI: 10.1021/ je00027a008.
- 39. Doman'ska U., Moollan W.C. // J. Chem. Eng. Data. 1996. V. 41. P. 261. DOI: 10.1021/je950236w.