EVALUATION OF THE ROTATING WAVE APPROXIMATION INFLUENCE ON POLARIZATION SPECTRA OF A TWO-LEVEL SYSTEM IN A POLYCHROMATIC FIELD

Capa

Citar

Resumo

Polarization spectra of a two-level system in a polychromatic field were obtained in two cases: using the rotating wave approximation and without using this approximation. The obtained spectra were compared using two indicators: the average deviation across the entire frequency range and the deviation at the transition frequency. Both indicators allow quantitative assessment of the distortion in polarization spectra introduced by the application of the rotating wave approximation. The dependencies of the above indicators on key model parameters were obtained – on the central frequency, detuning, and spectral width of the applied polychromatic field. The obtained dependencies allow evaluating the applicability limits of the rotating wave approximation for a given level of acceptable distortions in the polarization spectrum.

Sobre autores

A. Antipov

Saint Petersburg State University

Email: a.antipov@phys.spbu.ru
Rússia, 199034, Saint Petersburg

S. Uvarova

Saint Petersburg State University

Autor responsável pela correspondência
Email: usvik2015@gmail.com
Rússia, 199034, Saint Petersburg

Bibliografia

  1. G. S. Agarwal, Phys.Rev.A 4, 1778 (1971).
  2. D. F. Walls, Phys. Lett.A 42, 217 (1972).
  3. F. Bloch and A. Siegert, Phys.Rev. 57, 522 (1940).
  4. I. I. Rabi, Phys.Rev. 51, 652 (1937).
  5. H. Haken, Handbuch der Physik, Springer, Berlin (1970), Vol.XXV/2C.
  6. L.E. Estes, T.H. Keil, and L.M. Narducci, Phys. Rev. 175, 286 (1968).
  7. M. S. Conradi, S.A. Altobelli, S. J. Sowko et al., J.Magn.Res. 288, 23 (2018).
  8. E. Jericha, C. G¨osselsberger, H. Abele et al., Sci.Rep. 10, 5815 (2020).
  9. E.T. Jaynes and F.W. Cummings, Proc. IEEE 51, 89 (1963).
  10. W.E. Lamb, Jr., Phys.Rev. 105, 559 (1957).
  11. W.E. Lamb, Jr., in Quantum Optics and Electronics, Gordon and Breach, New York (1965), p. 329.
  12. C.Tserkezis, A. I. Fern´andez-Dom´ınguez, P.A.D.Gon,calves et al., Rep.Prog. Phys. 83, 082401 (2020).
  13. I. Maldonado, J. Villavicencio, L.D. Contreras-Pulido, E. Cota, and J.A. Maytorena, Phys.Rev.B 97, 19531 (2018).
  14. G. Rastelli and M. Governale, Phys.Rev.B 100, 085435 (2019).
  15. S. Huber, M. Buchhold, J. Schmiedmayer, and S. Diehl, Phys.Rev.A 97, 043611 (2018).
  16. C. Jirauschek, M. Riesch, and P. Tzenov, Adv. Theory Simul. 2, 1900018 (2019).
  17. А. Г. Антипов, С.А. Пулькин, А.С. Сумароков и др., Опт. и спектр. 118, 977 (2015) [A.G. Antipov, S.A. Pulkin, A. S. Sumarokov et al., Opt. Spectr. 118, 945 (2015)].
  18. T. Armon and L. Friedland, Phys.Rev.A 102, 052817 (2020).
  19. A.G. Antipov, A.A. Kalinichev, S.A. Pulkin et al., J. Phys.: Conf. Ser. 735, 012029 (2016).
  20. А. Г. Антипов, Н.И. Матвеева, С.А. Пулькин, С. В. Уварова, Опт. и спектр. 121, 947 (2016) [A.G. Antipov, N. I. Matveeva, S.A. Pul’kin, and S.V. Uvarova, Opt. Spectr. 121, 879 (2016)].

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).