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1. INTRODUCTION

Plasma physics is essential for understanding 
various astrophysical and laboratory phenomena, 
where electron transport significantly influences the 
behavior and evolution of plasma systems. In the 
field of fusion plasma, plasma heating and current 
drive have been primarily examined to maintain the 
conditions necessary for the magnetic confinement 
of plasmas [1]. It has been demonstrated that the 
propagation and damping of radiofrequency waves, 
including ion cyclotron, electron cyclotron, and 
lower-hybrid waves, produce energetic ions and 
electrons through Landau and cyclotron damping, 
which leads to current drive generation in the plasma 
system. Along with such collisionless damping, the 
collisional relaxation of energetic particles is involved 
in the evolution of particle distribution in the 
plasma system. Likewise, collisionless wave-particle 
interactions and collisional relaxation also play a 
crucial role in particle transport in astrophysical 
plasmas. Indeed, turbulence and the associated 
plasma instabilities are ubiquitous in astrophysical 

plasmas, and understanding energy transport through 
such turbulence is a long-standing problem [2–5].

Plasma phenomena and their dynamical evolution 
in space and astrophysical plasmas depend on the 
magnetization, defined as follows:
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stand for the plasma frequency and electron 
gyrofrequency, respectively, and these quantities 
depend on the plasma density n0  and magnetic 
field B0 . Thus, the phenomena associated with 
plasma physics have been examined across a wide 
range of magnetization factors [6–11]. For instance, 
the characteristics of plasma instabilities in space 
plasma depend on the properties of the medium, 
such as strongly magnetized plasma in the solar 
atmosphere near the Sun (ωpe e/ < 1Ω ) and weakly 
magnetized plasmas in the solar wind propagating 
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toward Earth (ωpe e/ > 1Ω ) [6, 7]. Additionally, a 
wide range of ωpe e/ Ω  can be adopted to model 
the pulsar wind propagation from the strongly 
magnetized magnetosphere of a pulsar to the weakly 
magnetized pulsar wind nebulae propagating toward 
the interstellar medium [8, 9]. Furthermore, rigorous 
theories have been proposed for kinetic turbulence 
and their roles in particle heating through energy 
transfer in ambient astrophysical environments, 
including weakly magnetized media such as 
interplanetary, interstellar, and intracluster media (
ωpe e/ 1Ω  ) [10, 11].

Understanding turbulence and dynamical 
evolution in various astrophysical media is crucial 
for comprehending particle transport across strongly 
magnetized to weakly magnetized plasmas, which is 
essential to examine the nature of plasma distribution 
in various space and astrophysical plasmas. The 
mechanisms behind particle transport in space 
weather have been particularly examined so far. 
Indeed, suprathermal electrons have been observed by 
the Parker Solar Probe in the interplanetary medium; 
these electrons are expected to originate in the solar 
corona and escape into the interplanetary medium 
along open magnetic field lines [12, 13]. While particle 
transport in plasmas has primarily been attributed 
to Coulomb collisions, observational evidence of 
suprathermal electrons highlights the importance 
of collisionless wave-particle interactions. In this 
regard, recent theoretical studies have proposed a 
kinetic model based on the Fokker-Planck equation, 
including wave-particle interactions mediated by 
plasma turbulence [14–23]. For instance, Kim et 
al. [14] highlighted that the persistence of a non-
Maxwellian distribution in the solar wind could be 
exhibited through wave-particle interactions due 
to Langmuir turbulence in the absence of Coulomb 
collisions (see also [15]). Tang et al. [16] incorporated 
Coulomb collisional effects along with wave-particle 
interaction terms into the kinetic model and showed 
that Coulomb collisions predominantly transport core 
electrons following a Maxwellian distribution, whereas 
suprathermal electrons are preferentially accelerated 
through whistler turbulence. Simulation studies using 
the particle-in-cell (PIC) method have also shown the 
formation of suprathermal electrons through whistler 
turbulence [24, 25]. These findings are consistent with 
observational evidence of suprathermal electrons in 
interplanetary space [12, 13].

Despite the considerable progress mentioned 
above, several gaps persist in our understanding, 
particularly regarding how these mechanisms operate 
under different plasma magnetization conditions. 
Notably, the plasma parameters, including 
magnetization, differ between interplanetary space 
and other astrophysical media such as interstellar 
and intracluster media. Consequently, plasma 
phenomena related to particle transport could also 
differ. While simulation studies using kinetic plasma 
simulations have demonstrated possible acceleration 
mechanisms through collisionless shocks and 
turbulence in various astrophysical media [26–31], 
it is essential to understand the transport of such 
accelerated particles in these media to demonstrate 
the persistence of non-Maxwellian distributions.

In this context, this work aims to improve our 
understanding of particle transport theory based 
on the kinetic transport equation and whistler 
turbulence under different plasma magnetization 
conditions relevant to various astrophysical media. 
To achieve this, we adopt a kinetic transport model 
that incorporates the spectral evolution influenced 
by both Coulomb collisions and wave-particle 
interactions, as proposed in previous works [16–
19]. By examining how suprathermal electrons 
are transported through whistler turbulence under 
varying degrees of plasma magnetization, we extend 
the applicability of the kinetic transport model to 
various astrophysical environments. This work reveals 
distinct behaviors in diffusion timescales for weakly 
and strongly magnetized plasmas, with significant 
implications for electron transport dynamics. 
Additionally, we identify minimum conditions for 
resonant scattering dominated by wave-particle 
interactions over Coulomb collisions, highlighting 
dependencies on Coulomb collision effects and the 
power-law slope of the whistler turbulence spectrum. 
This comprehensive approach allows us to explore 
diffusion timescales in both velocity and pitch angle 
space, providing new insights into the underlying 
processes governing electron transport in plasmas.

2. DESCRIPTION OF THE KINETIC MODEL

The evolution of the electron velocity distribution 
function in astrophysical environments has been 
examined using the kinetic transport equation [16–
19]. The electromagnetic interaction in a typical 
astrophysical environment includes the electric force 
and the Lorentz force, which are described as follows:
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Here, e  and me  are the electric charge and the 
mass of electrons, and E  and B  denote the electric 
and magnetic fields, respectively. a rr ( )  is the radial 
component of the acceleration due to the electric 
force, whereas aL  is the non-radial component due 
to the Lorentz force. Using the acceleration a  due to 
the external forces along with the terms responsible 
for Coulomb collisions and wave-particle interactions 
of kinetic turbulence, the kinetic transport equation 
can be described as follows:
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Here, the electron velocity distribution function is 
expressed in the position ( r ), velocity ( v ) and time 
(t) domains, and δ δf t
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/( )  and δ δf t

wp
/( )  include the 

effects of Coulomb collisions and kinetic turbulence, 
respectively. In the coordinates of the radial distance 
r , the velocity v , and the parameter including the 
pitch angle θ  between the velocity and magnetic 
field vectors (µ θº cos ), Equation (3) becomes
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The Coulomb collisions with Maxwellian 
backgrounds of electrons and protons have been 
employed in the solar wind environments [16]. The 
term associated with the Coulomb collisions [32] can 
be expressed as:
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where m mp e/  is the proton-to-electron mass ratio 
and v eth,  and v pth,  are the thermal velocities of 
the background Maxwellian electrons and protons. 
erf( )x  and G x( )  are the error function and the 
Chandrasekhar function, respectively. The collision 
frequencies corresponding to the collisions with the 
Maxwellian background electrons ( cv e, ) and protons 
( cv p, ) are given by:
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where n0  and lnΛ  are the plasma density and the 
Coulomb logarithm.

To model the terms for wave-particle interaction, 
we consider the resonant scattering of electrons by 
right-handed polarized whistler waves as a main 
wave-particle interaction mechanism in the turbulent 
plasma system. Considering the cyclotron resonance 
of electrons with waves propagating parallel to the 
guiding magnetic field B0 , the resonant particles 
satisfy the following condition:
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

+ Ω � (8)

where ωr  and k  are the oscillatory wave 
frequency and the wavenumber, respectively, and 
 e ee B m c=| | /0  is the electron gyrofrequency. The 
integer n ¹ 0  must be finite for cyclotron resonance 
through the parallel waves. In the whistler regime (
ωr e< Ω ), the magnetic power spectrum [18, 22] can 
be described as follows:
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where A  is the normalization constant, and the 
spectral index s  is expected not to exceed 2 [22]. The 
evolution of the electron distribution function due to 
wave-particle interaction through whistler turbulence 
[16–19] can be expressed as
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The diffusion tensor for nonrelativistic electrons 
is expressed as:
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Here, we used dimensionless parameters, 
b = /v c  and a pe e= /2 2ω Ω  with the plasma 

frequency ω πpe en e m= 4 /0
2 . To consider both 

weakly magnetized plasmas such as interplanetary, 
interstellar, and intracluster media ( a  1 ) and 
strongly magnetized plasmas near the stellar 
magnetosphere ( a < 1 ), we examine the properties 
of wave-particle interactions mediated by whistler 
turbulence over a wide range of parameter a .

In the kinetic model described by Equation 
(4), the detailed evolution mediated by Coulomb 
collisions and wave-particle interactions depends 
on the initial electron distribution. The electron 
distribution of thermal plasma is typically modeled 
as Maxwellian, given by:
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While the Maxwellian distribution is suitable for 
describing the medium in the absence of nonlinear 
processes such as plasma and magnetohydrodynamic 
(MHD) waves, shocks, and turbulence, it has been 
demonstrated that plasma processes associated 
with such phenomena can accelerate particles. This 
particle energization results in a distribution that 
deviates from Maxwellian, known as the kappa 
distribution [33–35]. The electron kappa distribution 
is defined as:
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where Γ( )x  is the Gamma function and 
the parameter κ  determines the slope of the 
suprathermal distribution. For v v e th, , the kappa 
distribution follows a power-law form,

f v veκ
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,
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A smaller value of κ  results in a flatter particle 
distribution, whereas a larger value of κ  makes 
the kappa distribution closer to Maxwellian. In the 
subsequent section, we explore how the initial slope 
of the electron distribution function inf luences 
electron transport through whistler turbulence, taking 
into account the dependence on magnetization.

It is noteworthy that the nature of plasma 
turbulence and wave-particle interaction mediated 
by such turbulence could be substantially different 
from the interpretation obtained through linear 
theory [36, 37]. Specifically, the effects of nonlinear 
processes on energy dissipation by whistler waves 
have been examined through PIC simulations 
[38, 39]. According to the results of these numerical 
simulations, the significance of nonlinear damping 
of whistler waves depends on the fluctuation energy 
of the turbulence and the magnetization of the 
plasma system [38]. In weakly magnetized plasma, 
linear damping dominates over nonlinear damping, 
indicating that the theory developed in the linear 
regime could be applicable for examining wave-
particle interaction through whistler turbulence. In 
strongly magnetized plasma, when the turbulent 
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fluctuation ( δB ) is sufficiently weak (i.e., δB B£ 0
), linear theory could be applicable. In this regard, 
the kinetic model in this work could be suitable for 
weak turbulence systems in space and astrophysical 
environments. For systems with strong turbulence (
δB B³ 0 ), nonlinear processes should be taken into 
account in the model, which is beyond the scope of 
this paper.

3. ELECTRON TRANSPORT THROUGH 
WAVE-PARTICLE INTERACTION AND ITS 

DEPENDENCE ON THE MAGNETIZATION 
OF THE PLASMA SYSTEM

Comparison of τ τµv vv/  (upper panels) and 
τ τµµ / vv  (lower panels) across parameter space. 
The plots depict variations with respect to electron 
velocity b  ranging from 10 3-  to 10 1- , and 
magnetization parameter a  spanning from 10 4-  to 
104 . Larger values of a  indicate weakly magnetized 
plasmas, whereas smaller values denote strongly 
magnetized plasma

Firstly, we examine the acceleration timescales 
through whistler turbulence and their dependence on 
the magnetic field strength using the three diffusion 
coefficients. The acceleration timescales can be 
derived as follows:

τ γ
π
β

β µ
µvv

e

e e

e vv

s

m v

D

a
A aΩ Ω− −

−

−≡










−
1

2 2 2

1
2

1
3

2 1=
3

(1 ) ,,  (16)

τ γµ

µ

v

e

e e

e v

m v

DΩ Ω− −
≡

1 1
=

=
3

2
3

1
3

1

a
A a a

s s

π
β
µ
µ

β µ µ
β
β µ









+










×

− − −

	 × − −(1 ) ,2 1∝ � (17)

τµµ

µµΩ Ωe e D− −
≡

1 1

1
=

=
3 2

3
3

2
3a

A a a

s s

π
β µ µ

µ
µ
β
β µ









+










+

− −

	 +
















−

− −

−µ
β

β µ
µ

2
1

3

1

2 1(1 ) ,
a

s

� (18)

where γe  is the Lorentz factor, which is approximately 
1 for nonrelativistic particles. To assess the relative 
importance of pitch angle scattering, the following 
ratios were calculated:
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In a strongly magnetized plasma ( a ® 0 ), the 
ratios simplify to:

	
τ
τ

µ
τ
τ

µµ µµv

vv vv
→ →− −1 2

, , � (21)

indicating that the relative importance of diffusion 
in pitch angle space is independent of the particle 
velocity b  and magnetic field strength parametrized 
by a  once the particles satisfy the resonant condition. 
Given that the pitch angle parameter satisf ies 
| |< 1∝ , the following relations hold true in strongly 
magnetized plasmas:

	 τ τ τµ µµvv v< < . � (22)

In weakly magnetized plasmas ( a  1), however, 
the ratios of these characteristic timescales may vary 
depending on the particle velocity b and magnetic 
field strength a.

Fig. 1 shows τ τµv vv/  and τ τµµ / vv  as functions 
of electron velocity b and magnetization a. A few 
points were noted: (1) In weakly magnetized plasmas 
( a  1), diffusion processes in the pitch angle space 
become prominent, whereas a saturated behavior 
is observed for particle acceleration in sufficiently 
strong magnetic fields ( a  1 ). (2) The dependence 
on magnetic field strength is more pronounced for 
accelerating electrons with higher b. Particularly, 
panels (a) and (d) show that τ τµv vv/  and τ τµµ / vv  
exhibit similar asymptotic behaviors for small b 
and large pitch angles | m | > 0.5, irrespective of A. 
Conversely, panels (b), (c), (e), and (f) illustrate 
that the effects of magnetic field strength on pitch 
angle scattering are more significant for electrons 
with larger b. (3) In strongly magnetized plasmas 
( a < 1), τµv  and τµµ  increase as the pitch angle | m | 
decreases, whereas the opposite behavior is observed 
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in weakly magnetized plasmas ( a > 1). This indicates 
that wave-particle interactions are influenced by the 
magnetic field strength of the background medium.

Next, we examine the conditions under which 
the acceleration timescales are dominated by wave-
particle interactions over Coulomb collisions. 
Assuming fixed background temperatures (constant 
v eth,  and v pth, ), these regimes depend on the 
magnetic field strength and the initial distribution 
of suprathermal electrons. Considering the diagonal 
terms in δ δf t

cc
/( )  and δ δf t

wp
/( )  for velocity space 

diffusion, we have the following expressions:
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For v v e th, , the Chandrasekhar function can 

be approximated as G v v v ve e( / ) ( / ) / 2, ,
2

th th≈ −  

and Equation (23) simplifies to:
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Fig. 1. Comparison of tμv/tvv (upper panels) and tμm/tvv (lower panels) across parameter space. The plots depict variations
with respect to electron velocity b ranging from 10−3 to 10−1, and magnetization parameter a spanning from 10−4 to 104.
Larger values of a indicate weakly magnetized plasmas, whereas smaller values denote strongly magnetized plasma
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Assuming the suprathermal electrons follow a 
kappa distribution function, the distribution of high-
energy electrons with v v e th,  approximates to a 
power-law tail, f v q∝ − . The derivatives of f  are 
expressed as follows:
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Using Equations (26) and (27), Equations (24) 
and (25) can be rewritten as
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Electrons gain energy when

δ δ δ δf t f t
cc wp( ) + ( ) ≥ 0.

In this case, we obtain the following inequality for 
D vv :
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Using the inequality (30), we examine how the 
slope of the initial distribution of suprathermal 
electrons could influence the relative importance 
between Coulomb collisions and wave-particle 
interactions. For nonrelativistic electrons where 
v ceth, / 1 b  (or the Lorentz factor γe » 1 ), the 
acceleration timescale ( )tvv  satisfies
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To explore the dependence on the slope of the 
suprathermal electron distribution, we estimate 
the maximum acceleration timescales for the two 
different regimes as follows:
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Fig. 2. a – ​Maximum acceleration timescale, tmv,max, plotted 
against b for four different q values. b – tmv,max shown for three 
different b values across various q values. The electron thermal 
velocity is set as vth,e/c = 10–3. Gray lines indicate tmv,max/c–1

v,e = 1
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Because electron velocities satisfy v v eth, 1  and 
v v pth, 1 , the maximum acceleration timescale 
is much larger when q → ∞ . This indicates the 
evolution of the electron distribution function with 
a larger q more effectively depends on Coulomb 
collisions, and such a distribution is likely to resemble 
a Maxwellian. It is understandable that wave-particle 
interactions with sufficiently large q  are inefficient 
due to the absence of a sufficient number of resonant 
particles. Indeed, acceleration timescales become 
longer regardless of electron velocity for larger 
q (panel a of Fig. 2), and these effects are more 
pronounced for suprathermal electrons with higher b.

While the analysis in this section has focused 
on the diagonal terms of the diffusion tensor, it 
has been demonstrated that the off-diagonal terms, 
particularly those involving diffusion in pitch angle 
scattering, are significant in weakly magnetized 
plasmas. Using equations (19) and (20), we can 
roughly estimate the maximum values of τµv  and 
τµµ  for wave-particle interactions. Applying the 
inequality (31) to Equations (19) and (20), we obtain
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Fig. 3 shows the behavior of the two characteristic 
timescales τµv  and τµµ  across a wide range of 
slope parameters q  and electron velocities b . In 
weakly magnetized plasmas ( = 10 )4a , shown in 
the left panels of Fig. 3, wave-particle interactions 
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Fig. 3. tmv,max and tmm,max for weakly (left panels) and strongly (right panels) magnetized plasmas. Here, the electron thermal velocity 
is assumed as vth,e/c = 10–3, and the gray lines display the value tmax/c–1

v,e = 1 
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magnetic field strength decreases (or,  e
-1  increases), 

we interpret that these effects could be minor when 
considering regimes dominated by wave-particle 
interactions ( )1

,
1 e v ec- -

 . Additionally, a steeper 
initial slope of the suprathermal electron distribution 
q  leads to a larger minimum velocity, indicating that 
transport of suprathermal electrons is less likely when 
q  is sufficiently large.

For low-frequency whistler waves ( )ωr e Ω , 
the wavenumber k



 and wavelength λ


 for scattering 
particles are derived as follows:
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From the inequality (35), we obtain the maximum 
wavenumber k

,max  and the minimum wavelength 
λ
,min  for wave-particle interactions:
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can effectively transport electrons with softer 
distribution slopes due to enhanced diffusion in 
pitch angle space. This enhancement occurs even 
in scenarios where tvv v ec> ,

1- , as τ τµµ µ< ,
1

v v ec

-  
can be satisfied. Conversely, in strongly magnetized 
plasmas ( = 10 )4a - , shown in the right panels of Fig. 
3, diffusion in pitch angle space does not significantly 
enhance efficient transport through wave-particle 
interactions when collisional effects dominate 
( > ),

1tvv v ec- , as τ τ τµ µµvv v< < .

4. CYCLOTRON RESONANCE 
OF SUPRATHERMAL ELECTRONS 

AND NATURE OF WHISTLER WAVES

In this section, we derive the conditions for the 
minimum velocity of resonant electrons and the 
characteristics of whistler waves corresponding to 
wave-particle interaction. The criteria described in this 
section encompass the characteristics of the turbulent 
power spectrum, such as its power-law slope, and 
the effects of Coulomb collisions, as depicted in the 
schematic Fig. (see Fig. 4). Assuming that the energy 
transferred through whistler turbulence remains 
constant across spectra with arbitrary slopes, the 
maximum wavenumber of a flatter spectrum could be 
larger than that of a steeper spectrum. Additionally, 
Coulomb collision effects may suppress energy transport 
to smaller scales, thereby allowing for a larger maximum 
wavenumber with stronger Coulomb collisional effects. 
Such wave characteristics could inf luence particle 
transport through turbulence by determining the 
minimum momentum of electrons required for wave-
particle interactions.

Considering only the electron collision term, the 
minimum velocity criterion can be derived using the 
inequality (31) as follows:
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Here, for simplicity, we consider only electron-
electron collisions since the collisional timescales 
satisfy c cv e v p,

1
,
1- -

 . Clearly, more electrons with 
lower velocities can be energized through wave-
particle interactions when collisional timescales are 
longer. While the minimum velocity increases as the 

PB(k)

(b)

(a)

PB(k)

km2 km1
k

(s1 < s2)

kcc kwp

k

k–s2

k–s1

Coulomb collisions

Fig. 4. a – ​Schematic diagrams illustrating whistler turbulence 
spectra with two different power-law slopes (s1, s2). Assuming 
constant energy transport through whistler turbulence, the 
maximum wavenumber for a steeper (s2) spectrum may be 
smaller than that for a flatter spectrum (s1) (km2  <  km1). b  – ​
Schematic diagrams demonstrating the influence of Coulomb 
collisions on turbulent energy transport. Coulomb collisions 
hinder energy transfer to smaller scales, potentially resulting in 
a smaller maximum wavenumber (kcc) compared to scenarios 
without Coulomb collisions (kwp)
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We also consider the minimum collisional length 
defined as
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In the criterion (37), the maximum wavenumber 
decreases as the initial slope of the electron 
distribution function (q) increases. This indicates that 
the wavenumber range of wave-particle interactions 
could be reduced when there are fewer suprathermal 
electrons (i.e., the spectrum is steeper with larger q).

According to the conditions for resonant scattering 
and efficient wave-particle interactions, we explore 
the minimum electron velocity and wave properties 
relevant to wave-particle interactions across varying 
power-law slopes of turbulent spectra. The maximum 
wavenumber k

,max  and minimum wavelength 
λ
,min , derived using the inequality (31) that includes 

Coulomb collisions and wave-particle interactions, 
align with the physical insights demonstrated in 
Fig.  4. Specifically, k

,max  decreases and λ
,min  

increases as the power-law slope of the turbulent 
spectra increases. This suggests that turbulence with 
a flatter spectrum is more efficient at transporting 
particles. Additionally, as shown by the solid lines 
in Fig. 5, relatively strong Coulomb collisions can 
suppress particle transport by reducing k

,max . In 
contrast, weakly collisional plasmas (represented 
by dashed lines in Fig. 5) exhibit greater k

,max  

Fig. 5. a — Minimum electron velocity, b — minimum collisional mean free path, c — maximum wavenumber, and d — minimum 
wavelength as functions of pitch angle μ. Solid lines correspond to c−1

v,e/We
−1 = 106, while dashed lines correspond to c−1

v,e/We
−1 = 107. 

The results are shown for q = 5 as an example
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values. It is important to note that this analysis 
generally applies to weakly collisional plasmas where 
λ λ� �,min mfp,min .

5. SUMMARY AND DISCUSSION

In this work, we demonstrate how wave-particle 
interactions through whistler turbulence differ 
between weakly and strongly magnetized plasmas. 
In strongly magnetized plasmas (characterized 
by a pe e= / 12 2ω Ω  ), the diffusion timescales at 
large pitch angles (| m | > 0.5) exhibit saturation for 
sufficiently small values of a, indicating that strong 
magnetic fields effectively regulate particle diffusion 
in pitch angle space. In weakly magnetized plasmas 
(where a  1 ), on the other hand, large-angle 
scattering can be enhanced due to the increased 
magnetization factor a. This enhancement suggests 
that electron transport via wave-particle interactions 
may dominate over Coulomb collisions, facilitated by 
enhanced diffusion in pitch angle space. Additionally, 
incorporating Coulomb collision effects, we provide 
conditions for electron transport through whistler 
turbulence, including the minimum electron velocity 
and wavelength required for resonant scattering. 
These findings are broadly applicable to weakly 
collisional astrophysical plasmas, offering insights 
into the range of resonant velocities and maximum 
wavenumbers for wave-particle interactions across a 
wide range of magnetic field strengths parametrized 
by a. In such environments, weakly magnetized 
mediums benefit from efficient transport via wave-
particle interactions, particularly when suprathermal 
particles are present.

We further comment on the signif icance of 
investigating particle transport through plasma 
turbulence in space and astrophysical media. The 
generation of suprathermal particles is feasible 
through collisionless shocks or plasma turbulence 
in various astrophysical environments, with multi-
wavelength emissions serving as observational 
evidence of particle acceleration. While studies 
on electron transport via whistler turbulence have 
predominantly focused on non-Maxwellian electron 
distributions in solar wind environments, similar 
investigations in diverse astrophysical contexts are 
warranted. For example, research has shown that 
velocity anisotropy in interstellar and intracluster 
media can induce whistler waves [27, 40, 41], 
potentially maintaining non-Maxwellian electron 
distributions within localized regions experiencing 

whistler turbulence. Additionally, it has been shown 
that suprathermal electrons can be generated by 
various plasma instabilities in astrophysical media, 
including whistler, firehose, mirror, and cyclotron 
instabilities. In particular, current drive exhibited in 
localized areas, such as the upstream and downstream 
regions of collisionless shocks, could trigger plasma 
instabilities that significantly amplify the magnetic 
field and generate suprathermal particles through 
waves satisfying cyclotron resonance conditions 
[26–28, 40–43]. The characteristics of these plasma 
instabilities and their acceleration efficiency depend 
on the properties of collisionless shocks, including 
the shock Mach number, plasma magnetization, 
and the geometry of the background magnetic field 
[27, 40]. Moreover, Lower-Hybrid waves could be 
induced by diamagnetic currents in inhomogeneous 
plasma systems, which typically propagate in space 
and astrophysical plasmas, including those with 
compressible turbulence. The roles of particle 
acceleration or heating through Lower-Hybrid waves 
have also been proposed [44, 45]. In this context, it is 
necessary to conduct further investigations, including 
the theory of particle transport through various 
plasma instabilities triggered in astrophysical media, 
corresponding numerical simulations to support the 
theory, and complementary observations representing 
particle acceleration and heating.
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