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Abstract. The influence of magnetic field amplitude on magnetization reversal kinetics and the magnetic 
hyperthermia effect produced by a single-domain ferromagnetic particle immobilized in a non-magnetic 
medium has been theoretically investigated. The calculation results, based on the mathematically regular 
Kramers theory, show that the dissipation W of alternating magnetic field energy in the particle can 
increase with field amplitude faster than according to the quadratic law 

2
0W H . This conclusion, at least 

in principle, explains recent experiments on magnetic hyperthermia in systems of immobilized particles, 
where the dependence was discovered 

 0W H γ , γ > 2.

DOI: 10.31857/S004445102408e091

1. INTRODUCTION
Composite systems consisting of magnetic 

nanoparticles embedded in a non-magnetic carrier 
medium attract great interest from researchers and 
practitioners due to their rich set of unique physical 
properties, which find active applications in many 
modern and promising industrial and biomedical 
technologies. Reviews of works on this topic can 
be found, for example, in [1–5]. In particular, the 
magnetic hyperthermia method for cancer treatment 
is based on introducing magnetic nanoparticles into a 
diagnosed tumor area and heating these particles with 
an alternating magnetic field to temperatures (typically 
above 41–42°C) at which tumor cells die [6–14]. The 
first theoretical work [15] on magnetic hyperthermia 
was based on phenomenological Debye equations for 
the remagnetization of magnetic nanoparticles using 
the approximation of linear dependence of particle 
magnetization on the external field. Cases of particles 
immobilized in an external medium and particles freely 
rotating in a viscous fluid were considered. In works 
[16], the remagnetization kinetics of immobilized 
ferromagnetic particles was studied using statistical 
physics methods based on the Fokker-Planck 
equation for the orientation distribution function 
of the particle's magnetic moment. Estimates of the 

particle's magnetization relaxation time in a constant 
magnetic field are provided. Theoretical studies of the 
remagnetization kinetics of a stationary particle in an 
alternating field were conducted in [17] for arbitrary 
values of magnetic anisotropy parameter and field 
amplitude. Within this approach, to determine the 
statistically average magnetization of the particle, it is 
necessary to solve, strictly speaking, an infinite system 
of coupled differential equations, and justifying the 
possibility of truncating it while maintaining a finite 
number of equations represents a separate problem. 
Analysis shows that the number of equations in the 
system that must be retained to obtain results with 
acceptable accuracy rapidly increases with increasing 
particle magnetic anisotropy parameter and magnetic 
field amplitude. Therefore, the task of deriving 
compact, sufficiently convenient equations for particle 
remagnetization kinetics remains relevant, even if under 
certain restrictions on the system's physical parameters.

One of the most important characteristics of 
magnetic hyperthermia as a physical phenomenon is 
the dependence of the intensity of W magnetic field 
energy dissipation (heat generation intensity) on the 
frequency and amplitude of the magnetic field. For 
small 0H  field amplitudes, where the approximation 
of linear dependence of magnetization on the field 
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holds true, the relation  0W H γ  is valid. An increase 
in the field leads to a slower than linear dependence 
of the particle system magnetization on the field, 
therefore it is natural to expect that this should 
lead to a slower than quadratic dependence of 
energy dissipation on the field amplitude. However, 
unexpectedly, recent experiments [18] showed a 
faster than quadratic dependence  0W H γ , γ > 2.

The aim of this work is, firstly, to derive a compact, 
convenient equation for the magnetization reversal 
kinetics of a ferromagnetic particle in alternating 
fields, which can be used in a fairly wide range of 
field amplitudes. Secondly, based on this equation, to 
show that a faster than quadratic dependence of the 
W energy dissipation intensity on the alternating field 
amplitude 0H  is quite possible and is not a consequence 
of methodological or other experimental errors.

For this purpose, we will consider a single-domain 
uniaxial ferromagnetic particle immobilized in a non-
magnetic medium. Note that the immobilization of 
magnetic nanoparticles often occurs, for example, when 
they are introduced into biological tissues [19, 20]. We 
limit ourselves to analyzing strong magnetic anisotropy 
of the particle, i.e., the energy of this anisotropy is 
assumed to be much greater than the thermal energy of 
the system. Since, as is known, the magnetic anisotropy 
energy is proportional to the particle volume, this means 
that the particle size is not very small. For example, it 
can be shown that for magnetite particles, often used in 
experiments and applications, the magnetic anisotropy 
energy exceeds thermal energy at room temperatures 
when the particle diameter is greater than 16–18 nm 
(estimates of physical characteristics of magnetite 
particles can be found, for example, in [21]). Note 
that the surface features of the nanoparticle can make 
an additional contribution to its magnetic anisotropy 
energy. Therefore, in reality, the strong anisotropy 
approximation may hold true even for particles with a 
diameter significantly smaller than the mentioned 16–
18 nm. Finally, we will neglect gyromagnetic effects, 
which manifest only at high field frequencies (on the 
order of gigahertz), significantly exceeding the range 
acceptable for many technological applications.

2. MATHEMATICAL MODEL AND BASIC 
APPROXIMATIONS

Consider a stationary ferromagnetic particle (see 
illustration in Fig. 1) placed in an oscillating magnetic 
field parallel to the particle's easy magnetization 
axis. Note that in in vitro experiments, the direction 

of particles' easy magnetization axes can be fixed 
along a chosen direction if the polymerization of the 
magnetic composite is carried out in a sufficiently 
strong constant field.

Let us denote �  – a unit vector directed along 
the magnetic moment of the particle (see Fig. 1) and 
f(�) ‒ a normalized to unity distribution function 
(probability density) over the orientations of vector �. 
This function can be found as a solution to the Fokker-
Planck equation, which, taking into account the axial 
symmetry of the problem, can be written as [16, 17, 22]

	
θ
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jτ τ θ
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Here j is the probability flux density in space �:
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Parameter τD is the characteristic time of 
rotational diffusion of the particle's magnetic 
moment, determined by its internal crystal structure; 
θ is the polar angle of deviation of vector � from the 
particle's magnetic anisotropy axis (hence, from the 
direction of the oscillating field, see Fig. 1); u – and 
dimensionless, with respect to absolute temperature 

Bk Θ particle energy, Θ is the absolute temperature in 
kelvins. Energy u can be represented as
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Fig. 1. Illustration of the particle under consideration. 
Thick line ‒ easy magnetization axis of the particle
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Here �0 is the magnetic permeability of 
vacuum; m – is the absolute value of the particle's 
magnetic moment; k  — is the particle's magnetic 
anisotropy parameter; pv  and pd  are the volume 
and diameter of the particle; h is the ratio of 
Zeeman interaction energy of the particle with 
magnetic field H to thermal energy Bk Θ, which 
can be considered as dimensionless magnetic field; 
σ – is the dimensionless parameter of particle's 
magnetic anisotropy. Note that for magnetite 
particles typically used in medical and biological 
applications, by order of magnitude -



910Dτ   s 
(see, for example, [21]).

In general case, the solution of equation (1) in 
finite analytical form has not been obtained. Here 
we consider the case of strong magnetic anisotropy, 
when strong inequalities are satisfied  1σ ,  hσ . 
Note that no other restrictions on the magnitude of 
magnetic field are assumed.

Within the accepted approximations in space � 
there are two potential wells separated by a potential 
barrier, i.e., function ( )u θ  at θ0 π   has two 
minima and one maximum.

The potential minima correspond to = 0θ  and 
θ = π; they are equal to respectively.
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u h
u hπ
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The value θmax of angle θ, corresponding 
to maximum u, is determined from equation 

-cos = /2max hθ σ ; the potential value at the 
maximum point equals

	
2

= .
4max
hu σ

	 (5)

Let's introduce probabilities 0P  and  Pπ that 
vector µ belongs to potential wells θ0 /2π   and

θ/2π π   respectively. They can be determined as 
follows:
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Obviously, the normalization condition 
0 = 1P Pπ+   must be satisfied. To find 0P , we integrate 

both sides of equation (1) in the same way as in the 

first integral (6). After simple transformations, we 
obtain

	 ¶
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To find ( )maxj θ , we will use the basic ideas of 
Kramers' classical theory of Brownian particle 
diffusion through a potential barrier (see also [23]). 
Following this method, we rewrite equation (2) as

	 ( )¶
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	 (8)

and integrate both sides of (8) over θ from 0 to π:
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Since  1σ , function u(θ) near its maximum 
has the form of a high sharp peak:

	 -  
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Therefore, we can evaluate the integral in the left 
part of (9) using standard steepest descent method 
considerations:
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In linear approximation for small ratio /h σ we 
obtain Ω = σ  and sin = 1maxθ . Consequently,
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Fig. 2. Statistically averaged projection �h of vector � as 
a function of time. Numbers near curves: 1 – h = 0.5; 
2 – h = 2.5



JETP, Vol. 166, No. 2(8), 2024

	 THE INFLUENCE OF MAGNETIC FIELD AMPLITUDE	 225

Combining (9) and (11), we obtain 
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Using (12) in equation (7), considering relations 
(4) and (5), replacing for simplification the 
approximate equality sign "≈" with the equality sign 
"=", within the approximation  1σ  we arrive at 
equation
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Let's now determine the relationship between 
probability 0P  and values f0, fπ of probability density f 
at points θ = 0 and θ = π of potential minima u. For 
this, as in Kramers' classical theory, we consider that 
the vector � transition through a high potential barrier 
is a relatively rare phenomenon, and the characteristic 
time between two such transitions is much longer 
than the time of thermodynamic equilibrium 
establishment in each potential well, which is of 
the order of τD. Therefore, at any moment we can 
consider the state inside such a well as practically 
equilibrium, described by the Boltzmann distribution 
function. Obviously, this does not mean equilibrium 
distribution between potential wells. Thus, in each 
of the potential wells θ0 /2π   and /2 π θ π , 
according to Boltzmann distribution we have

	 -0 0( ) = exp{ ( )}f f u uθ θ 	 (14)

and
	 -( ) = exp{ ( )}.f f u uπ πθ θ 	 (15)

Substituting (14) into the first relation (6), we 
obtain

	 -ò0 0 0
0

= exp{ ( )}sin =
max

P f u u d
θ

θ θ θ

	 ( )- - - - ´ò 2
0

0

= exp{ 1 }exp{ (1 cos )}cos
max

f h
θ

σ θ θ

	 ´sin .dθ θ 	 (16)

Since  1σ , function ( ){ }- - 2cosexp 1σ θ has a 
sharp maximum at θ = 0. Due to inequality  hσ  
exponential - -exp{ (1 cos )}h θ  changes with θ much 
slower than ( ){ }- - 2cosexp 1σ θ . Consequently, 
using the steepest descent method, we can represent
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Similarly
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Below for convenience in equations (17) and 
(18) we will use the equality sign "=" instead of the 
approximate equality "≈".

Due to the normalization condition +0 = 1P Pπ , 
using (17) and (18), we arrive at the equality

	 +0 = 2 .f f π σ 	 (19)
Combining relations (17), (18), and (19) with 

(13), we obtain the equation

	

σ
+

¶ é ù-ê úë û¶
0

0

2

4
3

1=  ch ,

= 2 = 2 .

h

II

h
I

II D

f
e f h

t

e
σ σ

στ

τ πτ τ
σ

	 (20)

The statistically average projection of the unit 
vector � on the field direction H can be calculated 
as follows:

	 +0= ,h h hπµ µ µ 	 (21)
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Taking into account (14), (15), and (19), equation 
(22) can be rewritten as
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Here, as in (17), (18), the saddle point method 
for evaluating definite integrals is used again.

Substituting (21), (23) into (20), we arrive at the 
equation
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3. RESULTS AND DISCUSSIONS
If h is time-independent, for example, after a 

step change in the field, parameter τN is constant and 
plays the role of characteristic Neel relaxation time 
�h to its equilibrium value th h; τN0 is the value of τN 
at = 0h . The obtained estimate τN0 coincides with 
that obtained in in the limit of very high magnetic 
anisotropy of the particle. As seen from (25), τN 
decreases with increasing magnetic field h (recall, 
strong inequality h σ  is assumed to hold), which 
corresponds to the conclusions of [16, 17].

When h varies with time t, the value τN depends 
on t and cannot be considered as relaxation time. 
Some calculation results for �h(t) after a step change 
of h from zero to some constant values are shown 
in Fig. 2. Increasing the final field value h leads to 
faster relaxation of �h to its equilibrium value. Note 
that after the field is turned off, the relaxation time 
�h to zero will be τN0, i.e., longer than the relaxation 
process time when increasing the field. Thus, the 
processes of system magnetization after field increase 
and demagnetization after its decrease (turnoff) are 
generally characterized by different relaxation times.

Let us now consider the case of oscillating 
field 0= cosh h tω , where 

0h σ  is its amplitude. 
Solution (24) with initial condition �h = 0 at  t = 0 
has the form
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We will define the effective complex susceptibility 
χ at the signal frequency as follows:
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Note that the susceptibility defined in this way 
determines the relationship between the average 
vector �h of particle magnetic moment orientation 
and dimensionless field h.

Fig. 3. Real and imaginary parts of effective susceptibility χ 
versus angular field frequency ω. Numbers next to curves: 
1 — 0 = 0.5h ; 2 — 0 = 2h . Parameter π τ0 0= 2 / Nω
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The measured material susceptibility, which 
relates the magnetization of the entire composite and 
the dimensional field H, is proportional to χ with 
coefficient

	
2

0 ,
p B

m
v k T

µ ϕ 	

where φ is the volume concentration of particles.
Some calculation results χ¢ and χ¢¢ are shown in 

Figs. 3 and 4.
Both parts χ¢ and  χ¢¢ of susceptibility decrease 

with field amplitude 0h  when the angular frequency ω 
is significantly less than ω0, and increase at relatively 
high values of ω. To our knowledge, this circumstance 
has not been previously noted in literature.

It is well known that an alternating magnetic 
field H causes heating of ferromagnetic particles, 
used particularly in cancer therapy (magnetic 
hyperthermia method). The physical reason for this 

heating is the dissipation of magnetic field energy 
during particle remagnetization.

The average value of dissipation energy over time 
{ } 02 / , NT π ω τ  can be determined from general 

thermodynamic considerations (see, for example, 
[15]):
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Using notations (3) and 0= cosH H tω , we easily 
obtain
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where w is the dimensionless energy dissipation 
intensity (heat generation intensity) in the particle.

Some calculation results w as a function of field 
frequency ω are shown in Fig. 5.

As can be seen, at relatively high frequencies w 
increases with field amplitude faster than according 
to the law 2

0w h . As ω approaches infinity, w tends 
to certain saturation. This is a well-known result in 
magnetic hyperthermia theory.

Some results of the relationship 2
0/w h  to  0h  are 

shown in Fig. 6.

Fig. 4. Real and imaginary parts of effective susceptibility 
χ versus amplitude h0 of oscillating field. Curves: 1  — 
ω = 0.1; 2 — ω = ω0. Parameter ω0 is the same as in Fig. 3

Fig. 5. Dimensionless heat generation intensity in particles 
versus angular field frequency. Curves: 1 — h0 = 0.5; 2 — 
h0 = 2. Parameter ω0 is the same as in Figs. 3, 4
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This figure also shows a faster than 2
0H  

dependence of W on 0H , when the field frequency is 
sufficiently high. Note that the scaling dependence 

 0W H γ , > 2γ  in composites with immobilized 
magnetic particles was discovered in experiments 
[18]. Thus, the theoretical analysis shows that the 
increase in heat generation intensity with field 
amplitude faster than according to the quadratic law 
is physically possible and cannot be considered as a 
result of a methodological error in the experiment.

4. CONCLUSIONS

The magnetization reversal kinetics and heat 
generation in a completely immobile single- domain 
ferromagnetic particle under the influence of an 
oscillating magnetic field have been theoretically 
considered. High magnetic anisotropy of the 
particle was assumed, which is quite typical for 
many experiments and technological applications of 
nanodispersed magnetic composites.

Our calculations, based on the mathematically 
consistent Kramers theory of Brownian diffusion 
through a high potential barrier, showed that the 
magnetic energy dissipation rate W, as expected, 
depends on the field amplitude 0H  slower than 
according to the law 2

0W H , when the field 
frequency is relatively low. When the frequency 
exceeds a certain threshold value, the function 

( )W H  changes faster than 2
0H . This conclusion 

explains, at least qualitatively, recent experimental 
results [18], which obtained the scaling relation

	
 0 , > 2.W H γ γ 	

We considered the case of parallel orientation of 
the magnetic field and the easy magnetization axis of 
the particle. Within the  1σ ,  hσ  approximation, 
it is not fundamentally difficult to consider the case of 
an arbitrary angle β between these vectors. For this, 
it is sufficient to replace the dimensionless field h 
with cosh β in the relations obtained here, neglecting 
the small magnetization component in the direction 
perpendicular to the particle's anisotropy axis.
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