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1. INTRODUCTION

The main fundamental physical process studied 
in quantum optics is the dynamics of interaction 
between an atom/molecule and a quantum 
mechanical electromagnetic field. In the study 
of such processes, important physical quantities 
that are studied (calculated or measured) are the 
quantum mechanical average populations of atomic 
quantum states (energy levels) and their fluctuations 
(dispersions), as well as the average values and 
fluctuations of population differences between the 
considered states of an atom or molecule. Other 
fundamental quantities characterizing the system 
of atoms and electromagnetic fields are the average 
values of f ield amplitude and their quantum 
f luctuations. The value of the complexvalued 
field amplitude (quantum mechanical average 
values of non-Hermitian creation/annihilation 
operators of the electromagnetic field) is described 
in quantum light theory using Hermitian photon 
number operators, as well as using Hermitian  
phase operator trigonometric function (POTF) of 

the electromagnetic field, which have real-valued 
average values and are thus directly measurable 
observable quantities.

Evolution (change in time) of the quantum 
mechanical state vector of the atom + field system 
| ( )tΨ ñ can be found for any initial state of the system 
| ( = 0)tΨ ñ by solving the Schrödinger equation 
in the Rabi model. The Rabi model in the dipole 
approximation for a two-level atom accounts for both 
real atomic transitions with emission or absorption 
of field photons and virtual processes, meaning 
photon emission accompanied by atom excitation, 
as well as photon absorption accompanied by 
atomic transition to a lower energy state [1-4].  
A widely used approximate theory based on the 
Rabi model is the Jaynes-Cummings model, within 
which the atom-field interaction Hamiltonian 
neglects terms responsible for virtual processes. 
The Jaynes-Cummings model (rotating wave 
approximation (RWA)) forms the basis of quantum 
laser theory. As calculations have shown [5-17], the 
applicability of RWA is limited to cases where the 
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atom-field interaction constant is small compared 
to the field frequency. The predictions of RWA 
and NRWA for averages and dispersions of photon 
numbers and atomic level populations coincide 
only when the absolute value of the interaction  
constant 2| |< 10 fg ω- , where fω   — is the field 
frequency.

Currently, several experimental works [1-4] have 
demonstrated the possibility of creating an "artificial 
two-level atom" with an atom-field interaction 
constant | | / 1fg g ωº

 , i.e., values characteristic 
of ultra-strong coupling (USC) between atom 
and field. Under such conditions, as shown in 
theoretical works [5-17], RWA ceases to be valid for 
the dynamics of average photon number and atomic 
state populations.

In this work, we have investigated the evolution of 
average quantum mechanical quantities for POTF 
under USC conditions and compared the evolution 
of average values and quantum fluctuations of these 
operators for various initial quantum states of the 
electromagnetic field and two-level atom for NRWA 
and JCM.

The case of microscopic fields with small photon 
numbers is considered, i.e., fields currently used in 
experiments related to quantum information and 
quantum computing.

2. ELECTROMAGNETIC FIELD  
PHASE OPERATORS  

IN AN ARBITRARY QUANTUM STATE

In works [18,19] Pegg and Barnett considered 
the solution of equations for eigenfunctions of 
the phase variable in the discrete spectrum of 
phase eigenvalues. Calculations showed that 
the eigenvectors ñm| θ  of field phase operators, 
considered in a finite-dimensional basis of Fock 
states, for phase eigenvalues 

    	 π
+

+
m

m m S
S0
2= , = 0,1, , ,

1
θ θ          (1)

where 1S +   — is an unlimitedly large but finite 
dimension of the Fock states basis, θ0 — an arbitrary 
number determining the interval of change of phase 
eigenvalues ( π+m0 0 2 θ θ θ ), form a complete 
orthonormal basis of state vectors. In works [18-20],  
it was proposed to consider a discrete basis of phase 

state eigenvectors in ( 1)S + -dimensional subspace 
of Fock states for eigenvalues (5) in the form 
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The Hermitian phase operator θϕ̂  with eigenvalues 
mθ  is thereby defined according to 
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S
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An important feature of the phase operator θϕ̂ ,  
defined according to (1)-(3), is that the results 
of calculations of mean values and field phase 
dispersions qualitatively depend on the choice 
of parameter θ0. Except for Fock states | nñ and 
eigenfields of the phase operator ñm| θ , for which 
means and dispersions do not depend on θ0, only 
the correct choice of parameter value θ0 ensures 
obtaining physically meaningful results when 
calculating these mean values. Thus, in this theory, 
the form of the field phase operator depends on 
the considered quantum state of the field. At 
the same time, as shown in [18-21], fields (3)  
have the form 

	 - -
+ -

i i i i
e e e e

i

ˆ ˆ ˆ ˆ

ˆ ˆcos = , sin =
2 2

ϕ ϕ ϕ ϕθ θ θ θ
θ θϕ ϕ

and can be written using relations 

+

- - +

- ñá + ñá

ñá - + ñá

å

å

0

0

ˆ ( 1)

=1

ˆ ( 1)

=1

= | 1 | | 0 |,

= | 1 | | 0 |,

Si i S

n
Si i S

n

e n n e S

e n n e S

ϕ θθ

ϕ θθ

   (4)

where the mean values of POTF ˆcos θϕ  and ˆsin θϕ  do 
not depend on parameter θ0 and, consequently, do 
not depend on the specific quantum state of the field 
being considered. The dispersions of Hermitian field 
POTF also do not depend on θ0.

3. RABI AND JAYNES-CUMMINGS 
MODELS OF DIPOLE INTERACTION 

OF A TWO-LEVEL ATOM WITH 
ELECTROMAGNETIC FIELD

Let's consider creation (annihilation) operators  
â†(â) of electromagnetic f ield, satisfying the 
following commutation relations: [â,â†] = 1,   
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and the photon number operator, which is defined 
using such operators according to n̂  = â†â.

In the case of dipole interaction between an atom 
and a field, the Hamiltonian of such a system in 
quantum theory can be written as (Hamiltonian 
NRWA for a two-level atom interacting with a 
single-mode electromagnetic field) 

            σ
ω ω+ +  

† ˆˆ ˆˆ ˆ= ,
2

z

f aH a a V 	 (5)

where the operator of dipole interaction between the 
atom and field is 

† *ˆ ˆ ˆˆ ˆ= ( )( ) =V ga g a σ σ+ -+ +

          † * † *ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ= ,ga a g ga a gσ σ σ σ+ - + -+ + + 	 (6)

for atomic subsystem operators 

	 ˆ =| | | |,z e e g gσ ñá - ñá

	 ˆ ˆ=| |, =| |e g g eσ σ+ -ñá ñá

and the constant of dipole interaction between field 
and atom 
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Here ˆ| | =| |
i d

egd g d e d e
ϕ

º á ñ   — is the matrix 
element of the atomic dipole transition, which is 
generally a complex number; V  is the quantization 
volume of the electromagnetic field, fω  — is the field 
frequency.

In the interaction representation, the Hamiltonian 
of atom-field interaction takes the form 

†ˆ ˆˆ ˆ=| | (
i t i t

IV g a e a e
∆ ∆

σ σ
- - -

+ -+ +


                           † ˆ ˆˆ ˆ ),
i t i t

a e a e
∆ ∆

σ σ
-+ +

+ -+ + 	 (8)

and the Schrödinger equation for the state vector 
of the atom + field system can be written in the 
interaction representation as follows: 

                     ˆ| ( ) = | ( )  .I
di t V t
dt

Ψ Ψñ ñ 	 (9)

We will solve the equation of motion (9) using the 
following expansion of the system state vector in 
terms of the complete basis of Fock field states | nñ 
and the basis of quantum states of the atom; excited 
| eñ and lower | gñ energy states of the two-level atom: 
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The equations for probability amplitudes included 
in (10) have the form 
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where denoted ∆- º -a fω ω , ∆+ º +f aω ω , 
i dg g e=| | ϕ .

Let's introduce dimensionless parameters 

∆ ∆- +

- +
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a f f a
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, ,

| | | |
ω ω ω ω

and also
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Let's further assume that the field frequency 
generally does not coincide with the atom 
transition frequency and the constant g  of field-
atom interaction is a complex number, and in the 
Hamiltonian of atom-field interaction (8), the last 
two terms responsible for virtual transitions are 
equal to zero (rotating wave approximation). Then 
the Schrödinger equation for an atom in the field 
can be solved analytically. The exact analytical 
solution of the equation system in the rotating wave 
approximation RWA (expansion coefficients in Fock 
states , ( )e nC t  and  , ( )g nC t ) can be written as [ [22] 

, , , 1( ) = (0) ( ) (0) ( ),e n g e n n g g n n gC t C A t C B t+-         
(12)

* *
, , 1 , 1 1( ) = (0) ( ) (0) ( ),g n g g n n g e n n gC t C A t C B t- - -+

where it is denoted 

	 ∆

∆

Ω Ω∆
Ω

Ω

Ω

- -

-

é ù
ê úº -ê ú
ê úë û

+
º





 / 2

/ 2

( ) cos sin ,
2 2

1( ) 2 sin  .
2

i tn g n g g
n g

n

i tn g i gd
n g

n

t ti
A t e

tnB t i e eϕ

 
(13)



	 EVOLUTION OF ELECTROMAGNETIC FIELD PHASE OPERATORS PROPERTIES	 627

JETP, Vol. 165, No. 5  2024

4. DYNAMICS  
OF QUANTUM MECHANICAL AVERAGES 

AND FLUCTUATIONS  
OF TRIGONOMETRIC FIELD PHASE 

OPERATORS

According to the theory of Hermitian field phase 
operator φ̂   [18, 19, 20, 21] (the lower index θ  in the 
phase operator notation will be omitted hereafter) 
the quantum mechanical average values of POTF  
of the field for any quantum field state | ( )tΨ ñ have 
the form 
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For the mean squares of POTF, necessary for 
calculating dispersions (fluctuations) of these quantities, 
for arbitrary field and atom states | ( )tΨ ñ we find 
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Using relations (15) al lows us to f ind 
expressions for dispersions (fluctuations) of POTF 
∆á ñ º á ñ-á ñt t t2 2 2ˆ ˆ ˆ( cos ) ( ) (cos ) ( ) cos ( )ϕ ϕ ϕ  a n d 
∆á ñ º á ñ-á ñt t t2 2 2ˆ ˆ ˆ( sin ) ( ) (sin ) ( ) sin ( )ϕ ϕ ϕ  th roug h 

numerical solution of the system of coupled differential 
equations (11) within the framework of FM.

5. FOCK INITIAL STATE OF THE FIELD

Let's consider the case when the initial field at = 0t  
is in a pure Fock state 0| n ñ. In this case, generally, 
the initial values of the expansion coefficients of the 

system state vector are non-zero , 0
(0) 0s nC ¹  for 

= ,s e g, while all others , 00
(0) = 0,s nC n n¹ .

In this case, the JCM solution (12), (13), using the 
RWA approximation, takes the following form: 
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T he remai n i ng , ,( ) = ( ) = 0e n g g n gC t C t  for 
¹ -0 0, 1n n n  or ¹ +0 0, 1n n n  espectively.
For dimensionless time in (16), the following 

notation is used | |gt g tº .
If the initial state of the atom is ñ|e , then the 

non-zero expansion coefficients of the system state  
vector are 
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If the initial state of the atom is ñ| g , then the time 
dependencies that are non-zero are
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Using formulas (16)–(18) and (14), it is easy to 
verify that in the case of the initial Fock state of 
the field for the initial atomic states | eñ and | gñ the 
quantum mechanical averages of POTF (14) are 
equal to zero: á ñ á ñn,RWA n,RWAt tˆ ˆcos( ( )) = sin( ( )) = 0ϕ ϕ ,  
which corresponds to a uniform distribution 
of random field phase values from 0 to  2π 
for any moment in time. Similarly, from  
(16)-(18) and (15), we obtain that the dispersions 
∆ ∆á ñ á ñn,RWA n,RWAt t2 2ˆ ˆ( cos ) ( ) = ( sin ) ( ) = 1 / 2ϕ ϕ  do 

not change over time for Fock initial field states and 
for initial atomic states | eñ or | gñ.

Fig. 1a,b shows the time dependencies of dispersions 
∆á ñn,RWAt2ˆ( cos ) ( )ϕ  and ∆á ñn,MRt 2ˆ( cos( ( )))ϕ  (i.e., 

for RWA and NRWA respectively) under USS 
conditions for the initial state | gñ and  | eñ of the 
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atom and initial field state | 1ñ. The figure shows that 
the results of the two models contradict each other. 
RWA predicts that the POTF field dispersions do 
not change over time during atom-field interaction, 
while NRWA indicates complex time dependence of 
these quantities under USC conditions. The figures 
also show (cf. Fig. 1a  and Fig. 1b) that the nature of 
dispersion evolution over time qualitatively depends 
on the initial state of the atom. 

Calculations also show that the mean values 
of POTF coincide under such conditions for both 
models and are equal to zero for any moment in 
time.

The calculation results do not depend on the 
phase value of the transition matrix element  .dϕ

A qualitatively different time dependence of 
means and dispersions of field phase operators is 
characteristic for the case of initial superposition 
state of excited and lower energy states of the atom:

| ( = 0) = | |  .a e gt C e C gψ ñ ñ+ ñ            (19)

Fig. 1c,d shows examples of dependencies of 
mean values of the field phase sine operator for the 
initial atom superposition state and USC. As seen 
in Fig. 1c, the mean of the phase sine operator is 

Fig. 1. a — Time dependence of the field phase cosine operator dispersion ∆á ñ2ˆ( cos )ϕ , following from the Rabi model for the atom + 
field system in the initial Fock state of the field (| 1ñ) and unexcited state of the atom | gñ, for the value of dimensionless coupling constant

fg / = 0 .5ω . The phase angle value of the transition matrix element d = 0ϕ . The dashed line shows a similar dependence obtained 
within the Jaynes-Cummings model. b – Time dependence of the field phase cosine operator dispersion ∆á ñ2ˆ( cos )ϕ  for the atom + field 
system in the initial Fock state of the field (| 1ñ) and excited state of the atom | eñ for the same parameter values. c – Time dependence of 
the mean value of the Pegg-Barnett field phase sine operator á ñˆsinϕ , following from the Rabi model for the atom + field system in the 

initial Fock state of the field (| = 1n ñ) and superposition state of the atom 1 (| | )
2

e gñ+ ñ  for the value of dimensionless coupling constant 

fg / = 0 .5ω . The phase angle value of the transition matrix element d = 0ϕ . The dashed line shows a similar dependence obtained 
within the Jaynes-Cummings model. d – Time dependence of the field phase sine operator dispersion ∆á ñ2ˆ( sin )ϕ  for the atom + field  
system in the initial field state (| = 1n ñ) and atom superposition state for the phase angle value of the transition matrix element πd = / 2ϕ  
with the same values of other parameters. The dashed line shows a similar dependence obtained within the Jaynes-Cummings model
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non-zero for both RWA and NRWA and has a 
complex time dependence in NRWA in the USC 
regime. These dependencies differ qualitatively for 
the two models. RWA predicts regular changes in 
the means of phase operators over time, similar to 
Rabi oscillations.

As shown in Fig. 1d, the dispersions (fluctuations) 
of the sine operator vary with time within the 
NRWA framework and remain highly accurate 
and unchanged in the RWA theory for the 
considered case of initial condition of atomic states 
superposition and Fock state of the field. In this 
case, the mean value of the sine operator remains 
close to zero for any moment in time. The change 
in the phase angle value of the matrix element for 
transition between atomic states dϕ  leads to a sharp 
increase within RWA of the oscillation amplitudes 
in time of the mean value of the phase sine operator 
and its dispersion (fluctuations) and their significant 
deviation from 0 and 1 / 2 respectively..

Note that in the interval of normalized 
dimensionless time variation (| | ) > 1000g t∆  the 
considered means and dispersions take on a chaotic 
appearance within the intervals of these values' 
changes.

6. COHERENT INITIAL  
STATE OF THE FIELD

Let us consider a coherent state as the quantum 
state of the measured field 

	
α α

α α
α

α α α
¥-

ñ ñ ºå/ 2 2

=0
| = | , = ,  | |  .

!

nn i

n
e n n e n

n
ϕ

As seen in Fig. 2a, the time variation of the mean 
value αá ñ ,NRWAtˆcos( ( ))ϕ , calculated within the NR 
framework (NRWA) for the initial coherent field state 
| αñ and excited atomic state | eñ, exhibits complex 
irregular time dependence and does not show the 
character of standard regular Rabi oscillations. 
In Fig. 2a the dynamics of the mean value of the 
field phase operator is compared with the similar 
dependence αá ñ ,RWAtˆcos( ( ))ϕ , obtained using the RWA 
approximation. The figure shows that in our case of 
ultra-strong coupling, NRWA gives qualitatively 
different time dependence of the field phase operator 
means throughout the entire time interval except 
for negligibly small values | |g t . Fig. 2b shows the 
dependencies of dispersions ∆á ñn,NRWAt 2ˆ( cos( ( )))ϕ  

and  ∆á ñn,RWAt 2ˆ( cos( ( )))ϕ , obtained within NRWA and 
RWA frameworks respectively, for the same parameter 
values. Calculations show that, similar to the case of 
quantum mean values of field, under USC conditions 
the results of the two models are qualitatively different. 
The RWA approximation, which takes place in the 
Jaynes-Cummings theory, proves to be invalid for 
the case of USC of the atom with the field.

Our calculations have shown that the absolute 
values of the means and variances of the POTF field 
qualitatively depend on the initial value of the phase 
angle of the initial coherent field state αϕ  (see Fig. 2  
and Fig. 3 for comparison). Thus, the very nature 
of the evolution of mean values and variances of the 

Fig. 2. a — Time dependencies of the mean value of the Pegg-
Barnett field phase cosine operator á ñˆcosϕ , following from the 
Rabi model for the atom + field system in the initial coherent 
field state (| = 1α ñ) and excited atomic state ñ| e , for the value of 
dimensionless coupling constant fg / = 0 .7ω , A f= 1 .1ω ω .  
The value of the phase angle of the transition matrix element

d = 0ϕ . The dashed line shows a similar dependence obtained 
within the Jaynes-Cummings model. b – Time dependencies of 
the variance of the field phase cosine operator ∆á ñ2ˆ( cos )ϕ  for 
the atom + field system in the initial coherent field state (| = 1α ñ)  

and excited atomic state | eñ for the same parameter values
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POTF field over time depends on the initial value of 
the phase angle of the coherent field state. 

At the same time, as our calculations have shown, 
the dynamics of the means and variances of the field 
phase for initial atomic states | gñ or | eñ does not 
depend on the value of the phase angle of the transition 
matrix element and dϕ . The qualitative dependence 
on this parameter arises in the case of the initial 
atomic state superposition of the form (19). Fig. 4 
shows the time dependencies of the mean and variance 
of the cosine phase operator for πd = / 2ϕ  in the 

case of initial atomic superposition state 1 (| | )
2

e gñ+ ñ   

and coherent field state. Calculations showed that for 
d = 0ϕ  and the same system parameter values, the 

dynamics of the considered means and variances 
qualitatively differs from the dynamics in the case of 

πd = / 2ϕ  under USC conditions. 

With an increase in the number of photons of 
the initial coherent state nα the difference between 
the results between RWA and NRWA theories for 
field evolution decreases for both mean values and 

Fig. 4. a  — Time dependencies of the mean value of 
the Pegg-Barnett f ield phase cosine operator á ñˆcosϕ ,  
following from the Rabi model (NRWA) for the atom + field 
system in the initial coherent field state (α ñ| = 1 ) and superposition 
atomic state 

1 (| | )
2

e gñ+ ñ , for the value of dimensionless 

coupling constant fg / = 0 .7ω , A f= 1 .1ω ω . The phase 
angle value of the transition matrix element πd = / 2ϕ .  
The dashed line shows a similar dependence obtained within 
the Jaynes-Cummings model (RWA). b – Time dependencies of 
the field phase cosine operator dispersion ∆á ñ2ˆ( cos )ϕ  for the  
atom + field system in the initial coherent field state (α ñ| = 1 )  

and superposition atomic state 
1 (| | )
2

e gñ+ ñ  for the same 
parameter

Fig. 3. a  — Time dependencies of the mean value of the 
cosine phase operator in Pegg-Barnett f ield theoryá ñˆcos ,ϕ   
following from the Rabi model (NRWA) for the atom + 
field system in the initial coherent field state ( /2| = ie πα ñ)  
and excited atomic state ñ|e , for the value of dimensionless 
coupling constant fg / = 0 .7ω , = 1 .1  .A fω ω  The phase  
angle value of the transition matrix element d = 0ϕ . The  
dashed line shows a similar dependency obtained within the 
Jaynes-Cummings model (RWA). b – Time dependencies of the 
field phase cosine operator dispersion ∆á ñ2ˆ( cos )ϕ  for the atom + field 
system in the initial coherent field state ( πα ñ/ 2| = ie ) and excited 

atomic state ñ|e  for the same parameter values
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dispersions of trigonometric phase operators and for 
mesoscopic coherent states with 1nα   practically 
coincide for USS.

In the case of coherent initial field state at 
1nα   and atom state superposition (19), there 

is a pronounced phenomenon of collapse and 
revival for both mean values and dispersions of 
POTF field. Thus, at = 30nα  (| |= 0 .1g , = 1∆-

 )  
and in the interval of dimensionless time 
700 <| | < 1100g t  for mean values operator values 
satisfy the relations

á ñ á ñ »n,RWA / NRWA n,RWA / NRWAt tˆ ˆcos( ( )) , sin( ( )) 0,ϕ ϕ

∆ ∆á ñ á ñ »n,NRWA n,RWAt t2 2 1ˆ ˆ( cos( ( ))) , ( cos( ( )))
2

ϕ ϕ

(same for operators sin). At | | < 700g t  damped 
regular Rabi oscillations occur. With increasing 
interaction time | | > 1100g t  oscillations of these 
quantities recover, i.e., the collapse phenomenon 
is replaced by the revival effect of Rabi oscillations 
[14,17,22-27]. At | | < 700g t  damped oscillations 
occur for both means and dispersions. It should be 
noted that the values of means and dispersions of the 
field POTF in the time variation interval, where the 
quantum collapse effect is present, are characteristic 
for the Fock state of the field.

The collapse and revival effect of oscillations 
of the considered quantities occurs for any initial 
atomic states.

The frequency of temporal osci l lations 
of the considered quantities signif icantly 
differs from the dominant Rabi oscillation  
frequency 2 2= 4 ( 1)R g nαΩ ∆ + + , ∆ º -a fω ω ,  
characteristic for Rabi oscillations of atomic 
population inversion for the initial coherent field 
state [14,17,27].

From the above, it can also be concluded that 
for studying the evolution of mean values and 
dispersions of field TPOF within the Pegg-Barnett 
phase operator theory, both the JCM (RWA) and 
RM (NRWA) approximations are applicable for 
meso- and macrofields with a large number of 
photons under USC conditions.

For a small number of photons in the coherent 
field state 1nα   under USC conditions, the 
evolution character of mean values and dispersions 
of field POTF qualitatively depends on the phase 
angle of the coherent initial field state αϕ  for any 

initial atomic state, while regular Rabi oscillations 
and the collapse and revival effect are absent.

The dependence of the dynamics of changes in 
these quantities on the phase angle of the atomic 
transition dipole moment dϕ  occurs only in the 
case of the initial atomic state (19) for small values 
of 1nα   (see Fig. 4), while for large > 10nα  the 
evolution of mean values and variances of field 
POTF is practically independent of  dϕ  for any initial 
atomic states. It should be noted that the evolution 
of means and variances of phase operators weakly 
depends on the initial state of the atom in the case 
of large photon numbers > 10nα  of the initial  
coherent field state.

7. CONCLUSION

In this work, we investigated the time evolution 
of quantum mechanical mean values (observables) 
and variances (quantum f luctuations) of field 
POTF during field-atom interaction. The case 
of USC of atom and field was considered and 
analyzed. The quantum mechanical Rabi model 
and Pegg-Barnett hermitian phase operator theory 
of electromagnetic field were used for calculations. 
The case of quantum microfields with mean photon 
number 1  was considered. A comparison was made 
between the evolution patterns of these quantities 
following from the Rabi theory and the approximate 
Jaynes-Cummings theory using the rotating wave 
approximation under USC conditions.

The analysis was conducted for various initial 
quantum states of the field and two-level atom. 

If the electromagnetic field is initially in a Fock 
state, the NRWA results fundamentally differ 
from the calculation results of the evolution of 
means and/or variances of field POTF under USC 
conditions. We have shown that in the case of the 
initial atomic state being in the excited or lower 
energy state, the phase operator variances within 
the RWA remain constant over time, while NRWA 
predicts a complex time dependence of field POTF 
variances. For the initial superposition state of two 
atomic states, the qualitative difference between 
NRWA and RWA results is present for both mean 
values and operator variances. In this case, there is 
a qualitative dependence of the evolution pattern of 
means and fluctuations of field POTF on the phase 
angle of the matrix element of the dipole transition 
between atomic states.
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We have shown the inapplicability of RWA 
(rotating wave approximation, RWA) for calculating 
the evolution of phase operators under USC 
conditions for Fock initial field states.

If the initial field state is coherent | αñ with a 
small number of photons 1nα  , then the RWA 
(RWM) approximation proves to be inapplicable for 
calculating the dynamics of means and variances 
of POTF field under USC conditions for any initial 
state of the atom interacting with the field. With the 
increase of nα the difference between NRWA and 
RWM results decreases and at 10nα   the results 
of both models are almost indistinguishable for any 
initial atomic states under USC conditions.

This work shows that the evolution of the 
considered quantities qualitatively depends on 
the phase angle of the initial coherent state of the 
microscopic field αϕ  for any initial atomic states, 
and under USC conditions qualitatively depends 
on the value of the phase angle dϕ  of the atomic 
transition matrix element in the case of initial 
superposition of atomic states.

It is shown that in the case of initial coherent 
field state with the number of photons 1nα   and 
for arbitrary initial atomic state, the time evolution 
of mean values and variances of field POTF is 
characterized by the phenomenon of collapse and 
revival of Rabi oscillations of these quantities.
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