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Abstract. Nonlinear absorption features of CdSe nanoplatelets colloidal solutions with a thickness of 2.5 and
3.5 monolayers were experimentally studied depending on the concentration in the case of resonant stationary
excitation by nanosecond laser pulses. An increase in the amplitude of differential transmission and absorp-
tion saturation intensity at the wavelengths of excitonic transitions associated with heavy holes was detected
for two series of samples with increasing concentration of nanoplatelets in the colloidal solution and explained
by the process of excitons phase space filling. For colloidal solutions of high-concentration nanoplatelets,
a region of negative differential transmission values was revealed at a sufficiently high pump intensity and
explained by the transition from the absorption saturation regime to the optical amplification regime.
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1. INTRODUCTION

In the last few decades, semiconductor structures
of reduced dimensionality have been of particular
practical and scientific interest. The improvement
of the methods of colloidal growth of nanocrystals
has led to the possibility of building nanocrystals
with specified optical and electronic properties due
to the possibility of controlling the parameters of the
crystal lattice, morphology, size and dimensionality,
as well as the possibility of creating heterostructural
nanocrystals: quantum dots [1], nanotetrapods [2,
3], nanoplatelets [4-6] and nanorolls [7].

Quantum-dimensional semiconductor crystals
are characterized by a spatial limitation of the mo-
tion of charge carriers, which determines a signif-
icant modification of their energy spectrum from

the initial spectrum of the bulk semi-conductor.
By controlling the size and dimensionality of nano-
crystals, it is possible to create objects with a given
effective band gap, with a controlled discrete optical
spectrum. In addition, the determining difference
between quantum-dimensional semiconductor
crystals and bulk semiconductors is a significantly
large oscillator force and exciton binding energy.
A common feature of all low-dimensional struc-
tures is a special type of absorption and photolumi-
nescence (PL) spectra due to the possibility of the
influence in them of the form of nanostructures
on nanostructures on the binding energy of excitons
[8], charge localization [9], charge-induced Stark
effect [10].

The above-mentioned features of nanocrystals
open up exceptional opportunities for the design
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Fig. 1. (In color online) Linear absorption spectra of colloidal nanoplatelets: CdSe393 (a) and CdSe463 (b)

of efficient optoelectronic devices, the principle
of operation of which is determined by exciton pro-
cesses. Examples include the successful creation
of phototransistors [11], highly efficient solar con-
centrators [12-14], LEDs [15-17], optical elements
of the laser active medium [18], Q-factor modulators
[19], biomarkers [20].

Recently, a new type of nanoparticles was synthe-
sized for the first time [4] — semiconductor two-di-
mensional nanocrystals of planar geometry (CdSe,
CdS, CdTe, CdSe / CdS, CdSe / CdZnS), called
“nanoplatelets”. Due to the lateral dimensions of
30—200 nm and a thickness not exceeding several
atomic layers (3—7 monolayers), the effect of di-
mensional quantization in these objects is real-
ized only in one selected direction. An important
feature of such nanocrystals is the increasing ratio
of surface atoms to atoms in volume, which leads
to an increase in the influence of surface states
on the optical properties of nanostructures [21,
22]. When charge carriers are captured to localized
surface states as a result of Auger recombination
[23-26], both an increase in the relaxation times
of PL during radiative relaxation from surface states
and accelerated depopulation during the transfor-
mation of nonradiative processes are possible. This
property is especially characteristic of ultrathin
nanoplatelets. To control these properties using

colloidal synthesis, heterostructural nanocrystals
are grown [27], including the second kind, which
are of particular interest due to the effect of photoin-
duced charge separation [28, 29].

In addition, all of the samples are characterized
by significantly lower values of the Stokes shift and
the attenuation time of luminescence in comparison
with other low-dimensional structures (in particu-
lar, with quantum dots) [30]. The third effect, which
distinguishes the nanoplastics from the rest of the
nanostructures, is a narrow band of luminescence
[31].

In this study we investigated the effect of the
concentration of CdSe nanoplatelets in a colloidal
solution on the nonlinear change in absorption
in the case of stationary excitation of charge carriers
by nanosecond laser pulses, as well as to establish
the characteristics of the absorption saturation due
to the effect of filling the exciton phase space [32].

2. EXPERIMENTAL SETUP

The object of the study was selected colloidal solu-
tions of CdSe nanocrystals: CdSe393 and CdSe463
with thicknesses of 2.5 monolayer (1.2 nm) and 3.5
monolayer (1.5 nm) respectively (the number in the
designation of the samples indicates the wavelength
of the exciton transition 1,,—1,, associated with
heavy holes, Fig. 1).
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The samples were synthesized by colloi-
dal chemistry and have a crystalline structure
of sphalerite. Hexane, transparent in the optical
range under study, was used as a solvent. To car-
ry out measurements, colloidal solutions of CdSe
nanoplatelets were placed in a glass cuvette with
a thickness of 1 mm. All measurements were carried
out at room temperature. The initial concentra-
tion of nanoplatelets in the colloidal solution was

about 10> cm™. A subsequent decrease in concen-
tration by 2 and 3 times was carried out by adding
a solvent to the initial colloidal solution. To char-
acterize the colloidal solutions of CdSe nanoplate-
lets of various thicknesses and concentrations,
their linear absorption spectra were measured.
On the absorption spectra of colloidal solutions of
CdSe nanocrystals with 2.5 monolayer thicknesses
(Fig. 1a), the absorption maximum at a wavelength of
393 nm corresponds to the exciton transition 1,,—1,.
The position of this peak does not depend on the
concentration of the solution. Depending on the
value of the absorption coefficient o (calculated

from Booger’s law [ = Ioe_o‘d) colloidal solutions
of CdSe393 nanoplatelets would be re-designated as
CdSel4, CdSel9 and CdSe32 for low, medium and
high concentrations of solution, respectively. The
linear absorption spectra of CdSe colloidal nano-
crystals with a thickness of 3.5 monolayers (Fig. 15)
are characterized by two maxima, the position
of which does not depend on the concentration, and
correspond to exciton transitions associated with
light (1,,—1,; 436 nm) and heavy (1,,—1,; 463 nm)
holes. Similarly, for colloidal solutions of CdSe463
nanoplatelets, the designations CdSel7, CdSe28 and
CdSe58 were used for low, medium and high con-
centrations of the solution respectively. The solvabil-
ity of exciton peaks at room temperature indicates
their significant binding energy [33] and the mono-
dispersity of nanocrystals in thickness.

The Pump&Probe method was used to deter-
mine the nonlinear change in the absorption of col-
loidal solutions of nanoplatelets. The samples were
excited by a pulse of the third harmonic (360 nm)
Nd’* : YAP (Nd*" : YAIO,; A = 1080 nm), oper-
ating in Q-factor modulation mode (pulse duration
T ~ 9 ns). Simultaneous probing was carried out with
a broadband PL of organic BBQ dyes (C,¢H,,O,)
for CdSe393, nanoplastic, as well as Coumarin-
120 (C,,HgNO,) for CdSe463 nanoplatelets. The
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selection of dyes was determined according to their
absorption spectra, in order to cover the wavelengths
of the main exciton absorption bands of the studied
nanoplatelets. In addition, the conditions of spatial
and temporal alignment of the pumping and prob-
ing beams were taken into account. In particular,
the duration of the dye PL is about 1 ns, which made
it possible to fulfill the condition of simultaneous ex-
citation and probing of samples.

The intensity of the exciting radiation of the
I, varied from 0.3 to 2.5 MW/cm? using neural
light filters. The transmission and PL spectra of
CdSe nanocrystals were measured using a Pixis 256
CCD camera combined with a SpectraPro 2300

polychromatometer.

3. RESULTS AND DISCUSSION

The dependences of the wavelengths correspond-
ing to the maximum of the PL and the values of the
half-width of the peak of the PL on the pump inten-
sity were plotted from the PL spectra of CdSe nano-
platelets (Fig. 2 and 3) (Fig. 4a, b).

The wavelengths of their maxima (402 =+ 3nm and
472 +£1 nm, respectively), which differ from the
wavelengths of the absorption peaks (393 nm and
463 nm, respectively) due to the Stokes effect, are
determined from the PL spectra of CdSe393 colloi-
dal nanocrystals (Fig. 2), CdSe463 (Fig. 3) at differ-
ent concentrations and pump intensities shift (about
10 nm; the emission of photons shifts relative to their
absorption into the long-wavelength region, includ-
ing due to the transfer of part of the energy into the
radiation of an optical phonon). In addition, it was
found that for CdSe463 samples, the width of the
PL peaks increases with increasing pump intensity
(Fig. 4a,b), and the maximum of the PL spectrum
shifts to the red region (Fig. 4e,f). The broadening
and shift of the PL peaks by about 4 nm (or 23 MeV)
is explained by the emission of charged excitons (tri-
ons) [34] and biexitons [35]. In addition, it was not-
ed that with an increase in the density of emitting
nanoparticles, the amplitudes of the PL peaks at the
same excitation levels have large values (Fig. 4c,d).

To determine the features of nonlinear absorp-
tion of samples, the Pump&Probe method described
in detail in [36] was applied. Differential transmis-
sion spectra (DT) were calculated from the mea-
sured transmission spectra [37]:
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Fig. 2. (In color online) PL spectra of CdSe393 colloidal nanoplatelets at different pump intensities for solutions of low (a), medium (b)
and high (c) concentrations (exposure time ¢t = 3 s)
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Fig. 3. (In color online) PL spectra of CdSe463 colloidal nanoplatelets at different pump intensities for solutions of low (a), medium (b)

and high (c¢) concentrations (exposure time f = 3 s)
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where T'(A) and T, (L) are the transmission spectra
of excited and non-excited samples, respective-
ly. Figures 5 and 6 show the DT spectra of colloi-
dal nanoplatelets at different pump intensities. For
CdSe393 series samples, the measured maximum
of the DT spectrum is associated with the illumi-
nation of the exciton transition from the heavy hole
sub-band. For samples of the CdSe463 series, the
presence of two maxima corresponding to exciton
transitions from the sub-band of light and heavy
holes was established.

On the basis of these data, the dependences of the
DT maxima on the intensity of the pitching were
also defined (Fig. 7, 8). To determine the saturation
intensities of / for each of the studied exciton tran-
sitions in CdSe nanoplatelets, a semi-empirical de-
pendence of the amplification on DT values on the
pump intensity [37] was used:

1 ;} )

DT(/)=DT, |1
1+1/1,

max

For CdSe393 nanoplatelets (Fig. 7), according
to formula (2), the values /, ~ 0.5+ 0.1MW/cm?
for a sample of low concentration CdSel4 and
I, ~ 0.6 £ 0.1MW/cm? for a sample of medium
concentration CdSel9. For CdSe463 nanoplatelets
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(Fig. 8), the values I _(/h) ~ 0.9 + 0.5 MW/cm? and
I (hh) ~ 1.4 £ 0.4 MW/cm? for a sample of low con-
centration CdSel7; I (/h) ~ 0.7 £0.2 MW/cm? and
I, (hh) ~1.6 £0.6 MW/cm? for sample of medium
concentration of CdSe28. This indicates an increase
in the amplitude of DT and the intensity of absorp-
tion saturation at the wavelengths of exciton transi-
tions1,,—1, for both samples CdSe393 and CdSe463,
with an increase in the concentration of nanocrys-
tals in colloidal solution, which is explained by the
process of filling the exciton phase space.

Of particular interest was the case of high concen-
tration for colloidal solutions of nanoplastics of both
thicknesses. For a solution of CdSe393 nanocrystals
in the case of high concentration (Fig.7h) at mod-
erate values of pump intensity (up to 1.5 MW/cm?),
an increase in transmission was detected, whereas
with values of pump intensity above 1.5 MW/cm?
an increase in absorption was detected.

Such a transition from an increase to a decrease
in transmission can be explained by the manifes-
tation of stimulated radiation during the resonant
excitation of the exciton transition associated with
heavy holes and the transition from the absorp-
tion saturation mode to the optical amplification
mode [38]. Nevertheless, the presence of optical
amplification or amplified spontaneous radiation
is an essential, but not fully sufficient condition for
the realization of forced radiation in highly limit-
ed systems. The absence of a negative DT signal for
exciton transitions of 1,,—1, in colloidal solutions

e
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Fig. 7. (In color online) Dependence of the maxima of differential transmission corresponding to the transition 1,,—1, on the pump
intensity for CdSe393 colloidal nanoplatelets of low/medium (a) and high (b) concentration
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can be explained by insufficient pump intensity
or a strongly limited length of the active medium
(1 mm cuvette).

According to the DT spectra of a colloidal solu-
tion of CdSe463 nanocrystals of high concentra-
tion (Fig. 8b), an increase in transmission and ab-
sorption saturation was detected at the wavelength
of exciton transitions associated with light and
heavy holes, however, the transition from absorp-
tion saturation to forced radiation was not detected
(the absence of a region with negative DT values).
For the exciton transition 1,,—1, associated with
light holes, according to formula (2), it was possi-
ble to determine the absorption saturation intensity
I (lh) ~ 0.5+0.1 MW/cm?,

In the case of the exciton transition 1,,—1, associ-
ated with heavy holes, it is not possible to determine
this characteristic. With an increase in the excitation
intensity, a sharp, almost linear increase in the
amplitude of DT was revealed, which may indicate
a boundary ratio between the excitation intensity
and the concentration of the colloidal solution of
CdSe463 nanoplatelets, exceeding which a transition
to optical amplification mode is possible. Similar re-
sults were demonstrated and explained in [38]. The
failure to achieve optical amplification in a colloi-
dal solution of nanoplastics of the CdSe393 popu-
lation is apparently explained by different excitation
modes. In case of CdSe393 nanoplatelets, excitation
is carried out at a wavelength corresponding to the
resonant excitation of excitons 1,,—I, which trans-
fer energy quite efficiently to excitons associated
with heavy holes 1,,—1, [5, 6], while when excited
at a wavelength of 360 nm in CdSe463 nanoplatelets
Initially, free electrons and holes are born, which,
in order to bind into excitons, must be given a total
energy of E, ~ 0.77 eV.

Thus, in the latter (non-resonant) case, high exci-
tation intensities are required to achieve optical am-
plification. In addition, other difficulties may arise
with the excess energy of free electrons and holes,
which both lead to the transfer of energy to phonons
and local heating of the nanoplatelets, and provoke
nonradiative Auger recombination [23-26], which
devastates the working state.

The process of Auger recombination in semi-
conductor nanocrystals can additionally lead to the

KLIMENKO et al.

capture of free carriers on the surface and manifest
itself in PL with the participation of defects. In the
studied nanoplastics with a thickness of 2.5 mono-
layers (CdSe393) and 3.5 monolayers (CdSe463)
[39] the PL band associated with defects is locat-
ed in the wavelength range of 430 —700 nm and
470 —700 nm, respectively. As a rule, the intensity
of PL on defects increases at excitation levels low
compared to the absorption saturation of the main
exciton transition, due to the fact that the relaxation
time exceeds units of microseconds

4. CONCLUSIONS

The effect of the concentration of colloidal CdSe
nanoplatelets of various thicknesses on the nonlinear
change in absorption during stationary excitation
of charge carriers by nanosecond laser pulses has
been determined. Resonant excitation of exci-
tons associated with light holes was analyzed for
samples of the CdSe393 series. An increase in the
differential transmission (DT) of colloidal structures
of CdSe nanocrystals of various concentrations has
been detected. The enlightenment, which increases
with the growth of optical excitation, is explained
by the filling of the exciton phase space. An increase
in the DT of a colloidal hole sub-band to the con-
duction sub-band was found only at pump intensi-
ties up to 1.5 MW/cm?2. At a pump intensity above
1.5 MW/cm?, a negative DT was revealed, which can
be explained by the transition from absorption sat-
uration to optical amplification mode. During the
excitation of free electrons and holes realized in the
colloidal solution of CdSe463 nanoplatelets, an in-
crease in DT was detected for all the concentrations
studied. In the studied range of excitation intensi-
ties, the transition from absorption saturation to the
optical amplification mode is not achieved, however,
a sharp increase in the amplitude of DT is revealed,
which may indicate a negative ratio of the excitation
intensity and the concentration of the colloidal solu-
tion of CdSe463 nanoplatelets, if exceeded, a tran-
sition to the optical amplification mode is possible.
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