🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

GENETIC VARIABILITY AND RELATIONSHIPS OF THE THREADED SCULPIN GYMNOCANTHUS PISTILLIGER (COTTIDAE)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Comparative molecular genetics study was performed for the threaded sculpin Gymnocanthus pistilliger from the Sea of Okhotsk, the Sea of Japan, and the Bering Sea. According to the analysis of mitochondrial DNA genes, the species heterogeneity is found, which does not relate to its geographical distribution. Gymnocanthus pistilliger is characterized by a closely related relationship with Gymnocanthus intermedius, the genetic differentiation between these species is low if considering them different species. The analysis of the obtained results in molecular genetics and morphological data published by other authors, suggest that G. pistilliger and G. intermedius represent either geographical forms (subspecies) of the same species, or evolutionarily young species.

Sobre autores

O. Radchenko

Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences

Email: mradchenko@mail.ru
Magadan, Russia

A. Petrovskaya

Institute of Biological Problems of the North, Far Eastern Branch of the Russian Academy of Sciences

Magadan, Russia

Bibliografia

  1. Дылдин Ю.В., Орлов А.М., Великанов А.Я. и др. 2020. Ихтиофауна залива Анива (остров Сахалин, Охотское море). Новосибирск: Золотой колос, 396 с.
  2. Линдберг Г.У., Красюкова З.В. 1987. Рыбы Японского моря и сопредельных частей Охотского и Желтого морей. Ч. 5. Л.: Наука, 526 с.
  3. Морева И.Н., Радченко О.А., Незнанова С.Ю. и др. 2016. Родственные отношения Stichaeus nozawae (Jordan et Snyder, 1902) и Stichaeus grigorjewi (Herzenstein, 1890) (Pisces: Stichaeidae) по данным молекулярно-генетического, карнологического анализа и ультраструктурного исследования сперматозоидов // Биология моря. Т. 42. № 5. С. 359–367.
  4. Морева И.Н., Радченко О.А., Петровская А.В., Борисенко С.А. 2017. Молекулярно-генетический и карно-логический анализ двурогих бычков группы Enophys diceraus (Cottidae) // Генетика. Т. 53. № 9. С. 1086–1097. https://doi.org/10.7868/S0016675817090119
  5. Морева И.Н., Радченко О.А., Петровская А.В. 2019. Кариологическая и молекулярно-генетическая дифференциация бахромчатых бычков рода Porocotius Gill, 1859 (Cottidae: Myoxocephalinae) // Биология моря. Т. 45. № 3. С. 208–216. https://doi.org/10.1134/S0134347519020086
  6. Панченко В.В., Матвеев А.А., Панченко Л.Л. 2020. Сезонное распределение нитчатого шлемоносца Gymnocanthus pistilliger (Cottidae) в российских водах Японского моря // Вопр. ихтиологии. Т. 60. № 2. С. 174–182. https://doi.org/10.31857/S0042875220020174
  7. Парин Н.В., Евсеенко С.А., Васильева Е.Д. 2014. Рыбы морей России: аннотированный каталог. М.: Т-во науч. изд. КМК, 733 с.
  8. Радченко О.А. 2005. Изменчивость митохондриальной ДНК гольцов рода Salvelinus. Магадан: Изд-во СВНЦ ДВО РАН, 153 с.
  9. Радченко О.А., Петровская А.В. 2019. Молекуляр-но-генетическая дифференциация дальневосточной широколобки Megalocottus platycephalus (Pallas, 1814) (Scorpaeniformes: Cottidae) // Биология моря. Т. 45. № 1. С. 61–72. https://doi.org/10.1134/S0134347519010078
  10. Рязанова И.Н., Полякова Н.Е. 2012. Дифференциация крупночешуйной красноперки Tribolodon hakonensis (Pisces: Cyprinidae) на российской части ареала по данным карнологического анализа и ПЦР-ПДРФ-анализа митохондриальной ДНК // Генетика. Т. 48. № 2. С. 225–234.
  11. Шмидт П.Ю. 1950. Рыбы Охотского моря. М.; Л.: Изд-во АН СССР, 370 с.
  12. Bandelt H.-J., Forster P., Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies // Mol. Biol. Evol. V. 16. № 1. P. 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  13. Dyldin Yu.V., Orlov A.M. 2022. Annotated list of ichthyofauna of inland and coastal waters of Sakhalin Island. 4. Families Triglidae—Agonidae // J. Ichthyol. V. 62. № 1. P. 34–68. https://doi.org/10.1134/S0032945222010039
  14. Fricke R., Eschmeyer W.N., van der Laan R. (eds.). 2024. Eschmeyer's catalog of fishes: genera, species, references (http://researcharchive.calacademy.org/research/ichthyology/catalog/fisheratmain.asp. Version 10/2024).
  15. Hoff G.R. 2000. Biology and ecology of threaded sculpin, Gymnocanthus pistilliger, in the eastern Bering Sea // Fish. Bull. V. 98. № 4. P. 711–722.
  16. Huson D.H., Bryant D. 2006. Application of phylogenetic networks in evolutionary studies // Mol. Biol. Evol. V. 23. № 2. P. 254–267. https://doi.org/10.1093/molbev/msj030
  17. Kodama Y., Yanagimoto T., Shimohara G. et al. 2008. Divergence age of a deep-sea demersal fish, Bothrocara hollandi, between the Japan Sea and the Okhotsk Sea // Mol. Phylogenet. Evol. V. 49. № 2. P. 682–687. https://doi.org/10.1016/j.vmpev.2008.08.022
  18. Kumar S., Stecher G., Suleski M. et al. 2024. MEGA12: Molecular Evolutionary Genetics Analysis version 12 for adaptive and green computing // Mol. Biol. Evol. V. 41. № 12. Article msae263. https://doi.org/10.1093/molbev/msae263
  19. Leaché A.D., Reeder T.W. 2002. Molecular systematics of the Eastern fence lizard (Sceloporus undulatus): a comparison of parsimony, likelihood, and Bayesian approaches // Syst. Biol. V. 51. № 1. P. 44–68. https://doi.org/10.1080/106351502753475871
  20. Maniatis T., Fritsch E.F., Sambrook J. 1982. Molecular cloning, a laboratory manual. N.Y.: Cold Spring Harbor Lab., 480 p.
  21. Mecklenburg C.W., Mecklenburg T.A., Thorsteinson L.K. 2002. Fishes of Alaska. Bethesda: Am. Fish. Soc., 1037 p.
  22. Mecklenburg C.W., Mecklenburg T.A., Sheiko B.A., Steinke D. 2016. Pacific Arctic marine fishes. Akureyri: CAFF, 377 p.
  23. Meyer A. 1993. Evolution of mitochondrial DNA in fishes // Biochemistry and molecular biology of fishes. V. 2. Amsterdam: Elsevier Press. P. 1–38.
  24. Moreva I.N., Radchenko O.A., Petrovskaya A.V. 2021. Differentiation of the frog sculpin Myoxocephalus stelleri Tilesius, 1811 (Actinopterysii, Cottidae) based on mtDNA and karyotype analyses // Comp. Cytogenet. V. 15. № 2. P. 179–197. http://doi.org/10.3897/CompCytogen.v15.i2.63207
  25. Puillandre N., Brouillet S., Achaz G. 2021. ASAP: assemble species by automatic partitioning // Mol. Ecol. Resour. V. 21. № 2. P. 609–620. http://doi.org/10.1111/1755-0998.13281
  26. Radchenko O.A., Moreva I.N., Poezzhalova-Chegadaeva E.A., Petrovskaya A.V. 2023. Identification, differentiation, and relationships of the warty sculpin Myoxocephalus verrucosus (Cottidae) from the Arctic, East Siberian Sea // Reg. Stud. Mar. Sci. V. 67. Article 103182. https://doi.org/10.1016/j.rsma.2023.103182
  27. Rambaut A., Drummond A.J., Xie D. et al. 2018. Posterior summarization in Bayesian phylogenetics using tracer 1.7 // Syst. Biol. V. 67. № 5. P. 901–904. https://doi.org/10.1093/sysbio/syy032
  28. Ronquist F., Teslenko M., van der Mark P. et al. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space // Syst. Biol. V. 61. № 3. P. 539–542. https://doi.org/10.1093/sysbio/sys029
  29. Sakuma K., Ueda Y., Hamatsu T., Kojima S. 2014. Contrasting population histories of the deep-sea demersal fish, Lycodes matsubarai, in the Sea of Japan and the Sea of Okhotsk // Zool. Sci. V. 31. № 6. P. 375–382. https://doi.org/10.2108/zs130271
  30. Wilson D.E. 1973. Revision of the cottid genus Gymnocanthus, with a description of their osteology: M.S. Thesis. Vancouver: Univ. Brit. Columbia, 223 p. https://doi.org/10.14288/1.0093237
  31. Yamazaki A., Markevich A., Munehara H. 2013. Molecular phylogeny and zoogeography of marine sculpins in the genus Gymnocanthus (Teleostei; Cottidae) based on mitochondrial DNA sequences // Mar. Biol. V. 160. № 10. P. 2581–2589. https://doi.org/10.1007/s00227-013-2250-4

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».