Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 78, № 5 (2023)

Обложка

Плотность квантованных приближений

Бородин П.А., Шкляев К.С.

Аннотация

Работа содержит обзор известных и доказательства новых результатов об условиях на множество $M$ в банаховом пространстве $X$, необходимых или достаточных для того, чтобы порождаемая им аддитивная полугруппа $R(M)=\{x_1+…+x_n\colon x_k\in M, n\in {\mathbb N}\}$ была плотна в $X$. Доказывается, в частности, что если $M$ – спрямляемая кривая в равномерно гладком действительном пространстве $X$, не лежащая целиком ни в каком замкнутом полупространстве, то $R(M)$ плотна в $X$. Приводятся известные и новые результаты о приближении наипростейшими дробями (логарифмическими производными многочленов) в различных пространствах функций комплексного переменного. При этом некоторые из известных теорем, в частности, теорема Кореваара, выводятся из новых общих результатов о плотности полугруппы. Исследуются также приближения естественным обобщением наипростейших дробей – суммами сдвигов одной функции. Библиография: 79 названий.
Успехи математических наук. 2023;78(5):3-64
pages 3-64 views

Smooth DG algebras and twisted tensor product

Орлов Д.О.

Аннотация

The twisted tensor product of DG algebras is studied and sufficient conditions for smoothness of such a product are presented. It is shown that in the case of finite-dimensional DG algebras, applying this operation offers great possibilities for constructing new examples of smooth DG algebras and algebras. In particular, examples are given of families of algebras of finite global dimension with two simple modules that have non-trivial moduli spaces. Bibliography: 24 titles.
Успехи математических наук. 2023;78(5):65-92
pages 65-92 views

Биллиарды и интегрируемые системы

Фоменко А.Т., Ведюшкина В.В.

Аннотация

Обзор посвящен классу интегрируемых гамильтоновых систем и классу интегрируемых биллиардов, а также недавним результатам авторов и их учеников по задаче сравнения этих классов с точки зрения послойной гомеоморфности их слоений Лиувилля. Ключевым инструментом здесь оказались введенные В. В. Ведюшкиной биллиарды на кусочно-плоских CW-комплексах – топологические биллиарды и биллиардные книжки. Приведено построение класса эволюционных (силовых) биллиардов, введенных недавно А. Т. Фоменко и позволяющих моделировать систему сразу в нескольких неособых зонах энергии при помощи одного биллиарда, а также его применение для геодезических потоков на двумерных поверхностях и систем механики. Обсуждаются другие интегрируемые обобщения классического биллиарда, включая биллиарды с потенциалами, биллиарды в магнитном поле, биллиарды с проскальзыванием. Биллиардные книжки с потенциалом Гука, склеенные из плоских софокусных или круговых столов, моделируют четырехмерные полулокальные особенности слоений интегрируемых систем, содержащие невырожденные положения равновесия. Рассмотрение пересечения нескольких софокусных квадрик в $\mathbb{R}^n$ приводит к обобщению теоремы Якоби–Шаля. Библиография: 144 названия.
Успехи математических наук. 2023;78(5):93-176
pages 93-176 views

Нижняя оценка триангуляционной сложности 3-многообразий с краем

Нигомедьянов Д.Д., Фоминых Е.А.
Успехи математических наук. 2023;78(5):177-178
pages 177-178 views

Об одном свойстве дискретных моделей волнового кинетического уравнения

Бобылев А.В.
Успехи математических наук. 2023;78(5):179-180
pages 179-180 views

Условия надкритичности для ветвящихся блужданий в случайной убивающей среде с единственным центром размножения

Куценко В.А., Молчанов С.А., Яровая Е.Б.
Успехи математических наук. 2023;78(5):181-182
pages 181-182 views

О соизмеримости некоторых емкостей с гармоническими

Мазалов М.Я.
Успехи математических наук. 2023;78(5):183-184
pages 183-184 views

О сходимости рациональных аппроксимаций Эрмита–Паде

Суетин С.П.
Успехи математических наук. 2023;78(5):185-186
pages 185-186 views

К 90-летию Всеволода Алексеевича Солонникова

Бижанова Г.И., Денисова И.В., Назаров А.И., Пилецкас К.И., Пухначев В.В., Репин С.И., Родригеш Ж.Ф., Серёгин Г.А., Уральцева Н.Н., Фролова Е.В.
Успехи математических наук. 2023;78(5):187-198
pages 187-198 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».