Спектральное неравенство для уравнения Шрёдингера с многоточечным потенциалом
- Авторы: Гриневич П.Г.1,2,3, Новиков Р.Г.4,5
-
Учреждения:
- Математический институт им. В.А. Стеклова Российской академии наук
- Институт теоретической физики им. Л.Д. Ландау Российской академии наук
- Московский государственный университет имени М. В. Ломоносова
- École Polytechnique CNRS, Centre de Mathématiques Appliquées
- Институт теории прогноза землетрясений и математической геофизики Российской академии наук
- Выпуск: Том 77, № 6 (2022)
- Страницы: 69-76
- Раздел: Статьи
- URL: https://bakhtiniada.ru/0042-1316/article/view/142318
- DOI: https://doi.org/10.4213/rm10080
- ID: 142318
Цитировать
Аннотация
Рассматривается уравнение Шрёдингера с потенциалом, который является суммой регулярной функции и конечного набора точечных рассеивателей типа Бете–Пайерлса. Для этого уравнения рассматривается спектральная задача с линейными однородными граничными условиями, включая случаи Дирихле, Неймана и Робина. Показано, что если энергия $E$ является собственным значением кратности $m$, то после добавления к потенциалу дополнительных $n$ ($n < m$) точечных рассеивателей она остается собственным значением кратности не менее m−n. Как следствие, поскольку для нулевого потенциала все энергии являются энергиями частичной прозрачности бесконечной кратности, то для n-точечных потенциалов это свойство также имеет место, что было обнаружено в нашей недавней работе. Библиография: 33 названия
Об авторах
Петр Георгиевич Гриневич
Математический институт им. В.А. Стеклова Российской академии наук; Институт теоретической физики им. Л.Д. Ландау Российской академии наук; Московский государственный университет имени М. В. Ломоносова
Автор, ответственный за переписку.
Email: pgg@landau.ac.ru
доктор физико-математических наук, ведущий научный сотрудник
Рoман Геннадьевич Новиков
École Polytechnique CNRS, Centre de Mathématiques Appliquées; Институт теории прогноза землетрясений и математической геофизики Российской академии наук
Email: roman.novikov@polytechnique.edu
доктор физико-математических наук
Список литературы
- Л. Д. Ландау, Е. М. Лифшиц, Теоретическая физика, т. III, Квантовая механика. Нерелятивистская теория, 3-е изд., Наука, М., 1974, 752 с.
- В. Е. Захаров, С. В. Манаков, С. П. Новиков, Л. П. Питаевский, Теория солитонов. Метод обратной задачи, Наука, М., 1980, 320 с.
- С. Альбеверио, Ф. Гестези, Р. Хеэг-Крон, X. Хольден, Решаемые модели в квантовой механике, Мир, М., 1991, 568 с.
- L. Faddeev, “Instructive history of the quantum inverse scattering method”, KdV '95 (Amsterdam, 1995), Acta Appl. Math., 39:1-3 (1995), 69–84
- P. G. Grinevich, R. G. Novikov, “Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials”, Comm. Math. Phys., 174:2 (1995), 409–446
- П. Г. Гриневич, “Преобразование рассеяния для двумерного оператора Шрeдингера с убывающим на бесконечности потенциалом при фиксированной ненулевой энергии”, УМН, 55:6(336) (2000), 3–70
- И. А. Тайманов, С. П. Царев, “О преобразовании Мутара и его применениях к спектральной теории и солитонным уравнениям”, Труды Пятой Международной конференции по дифференциальным и функционально-дифференциальным уравнениям, Часть 1 (Москва, 2008), СМФН, 35, РУДН, М., 2010, 101–117
- Р. Г. Новиков, И. А. Тайманов, С. П. Царев, “Двумерные потенциалы Вигнера–фон Неймана с кратным положительным собственным значением”, Функц. анализ и его прил., 48:4 (2014), 74–77
- H. Bethe, R. Peierls, “Quantum theory of the diplon”, Proc. Roy. Soc. London Ser. A, 148:863 (1935), 146–156
- L. H. Thomas, “The interaction between a neutron and a proton and the structure of $mathbf H^3$”, Phys. Rev. (2), 47:12 (1935), 903–909
- E. Fermi, “Sul moto dei neutroni nelle sostanze idrogenate”, Ricerca Sci., 7(2) (1936), 13–52
- Я. Б. Зельдович, “Рассеяние сингулярным потенциалом в теории возмущений и в импульсном представлении”, ЖЭТФ, 38:3 (1960), 819–824
- Ф. А. Березин, Л. Д. Фаддеев, “Замечание об уравнении Шредингера с сингулярным потенциалом”, Докл. АН СССР, 137:5 (1961), 1011–1014
- Ю. Н. Демков, В. Н. Островский, Метод потенциалов нулевого радиуса в атомной физике, Изд-во Ленингр. ун-та, Л., 1975, 240 с.
- В. А. Буров, С. А. Морозов, “Связь между амплитудой и фазой сигнала, рассеянного ‘точечной’ акустической неоднородностью”, Акустич. журн., 47:6 (2001), 751–756
- Н. П. Бадалян, В. А. Буров, С. А. Морозов, О. Д. Румянцева, “Рассеяние на акустических граничных рассеивателях с малыми волновыми размерами и их восстановление”, Акустич. журн., 55:1 (2009), 3–10
- K. V. Dmitriev, O. D. Rumyantseva, “Features of solving the direct and inverse scattering problems for two sets of monopole scatterers”, J. Inverse Ill-Posed Probl., 29:5 (2021), 775–789
- P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for point potentials in two dimensions”, Phys. Lett. A, 376:12-13 (2012), 1102–1106
- P. G. Grinevich, R. G. Novikov, “Faddeev eigenfunctions for multipoint potentials”, Eurasian J. Math. Comput. Appl., 1:2 (2013), 76–91
- П. Г. Гриневич, Р. Г. Новиков, “Многоточечные рассеиватели со связанными состояниями при нулевой энергии”, ТМФ, 193:2 (2017), 309–314
- P. G. Grinevich, R. G. Novikov, “Creation and annihilation of point-potentials using Moutard-type transform in spectral variable”, J. Math. Phys., 61:9 (2020), 093501, 9 pp.
- P. G. Grinevich, R. G. Novikov, “Transmission eigenvalues for multipoint scatterers”, Eurasian J. Math. Comput. Appl., 9:4 (2021), 17–25
- А. Д. Агальцов, Р. Г. Новиков, “Примеры решения обратной задачи рассеяния и уравнений иерархии Веселова–Новикова по данным рассеяния точечных потенциалов”, УМН, 74:3(447) (2019), 3–16
- R. G. Novikov, “Inverse scattering for the Bethe–Peierls model”, Eurasian J. Math. Comput. Appl., 6:1 (2018), 52–55
- Р. Г. Новиков, И. А. Тайманов, “Преобразование Мутара и двумерные многоточечные дельтаобразные потенциалы”, УМН, 68:5(413) (2013), 181–182
- D. S. Chashchin, “Example of point potential with inner structure”, Eurasian J. Math. Comput. Appl., 6:1 (2018), 4–10
- E. Amaldi, O. D'Agostino, E. Fermi, B. Pontecorvo, F. Rasetti, E. Segrè, “Artificial radioactivity produced by neutron bombardment–II”, Proc. Roy. Soc. London Ser. A, 149:868 (1935), 522–558
- A. Kirsch, “The denseness of the far field patterns for the transmission problem”, IMA J. Appl. Math., 37:3 (1986), 213–225
- D. Colton, P. Monk, “The inverse scattering problem for time-harmonic acoustic waves in an inhomogeneous medium”, Quart. J. Mech. Appl. Math., 41:1 (1988), 97–125
- F. Cakoni, H. Haddar, “Transmission eigenvalues”, Inverse Problems, 29:10 (2013), 100201, 3 pp.
- B. P. Rynne, B. D. Sleeman, “The interior transmission problem and inverse scattering from inhomogeneous media”, SIAM J. Math. Anal., 22:6 (1991), 1755–1762
- E. Lakshtanov, B. Vainberg, “Weyl type bound on positive interior transmission eigenvalues”, Comm. Partial Differential Equations, 39:9 (2014), 1729–1740
- F. Cakoni, Hoai-Minh Nguyen, “On the discreteness of transmission eigenvalues for the Maxwell equations”, SIAM J. Math. Anal., 53:1 (2021), 888–913
Дополнительные файлы
