Hydrothermal liquefaction of microalgae to produce biofuels: state of the art and future prospects
- 作者: Vlaskin M.S.1, Chernova N.I.2, Kiseleva S.V.2, Popel’ O.S.1, Zhuk A.Z.1
-
隶属关系:
- Joint Institute for High Temperatures
- Geographic Faculty
- 期: 卷 64, 编号 9 (2017)
- 页面: 627-636
- 栏目: Energy Conservation, New and Renewable Energy Sources
- URL: https://bakhtiniada.ru/0040-6015/article/view/172797
- DOI: https://doi.org/10.1134/S0040601517090105
- ID: 172797
如何引用文章
详细
The article presents a review of the state of the art and lines of research on hydrothermal liquefaction (HTL) of microalgae (MA). The main advantages of this technology for production of biofuel are that it does not require predrying of the feedstock and ensures a relatively high product yield—the ratio of the end product weight to the feedstock weight—owing to the fact that all the microalgal components, viz., lipids, proteins, and carbohydrates, are converted into biofuel. MA hydrothermal liquefaction is considered to be a promising technology for conversion of biomass and is a subject of a series of research studies and, judging by the available publications, the scope of research in this field is expanding currently. However, many significant problems remain unsolved. In particular, an active searched is being conducted for suitable strains that will ensure not only a high lipid yield—necessary to convert microalgae into biodiesel—but also higher biomass productivity and a higher biofuel yield; the chemical reactions that occur during the hydrothermal treatment are being studied; and the effect of significant process variables, such as temperature, heating rate, holdup time at the maximum temperature, biomass concentration in the water suspension, biochemical and elemental compositions of the microalgae, use of catalysts, etc., on the liquefaction processes is being studied. One of the urgent tasks is also the reduction of the nitrogen content in the resulting biofuel. Studies aimed at the development of a continuous process and rational heat-processing plants for thermal microalgal conversion are being conducted to increase the energy efficiency of the HTL process, in particular, to provide the heat recovery and separation of the end product.
作者简介
M. Vlaskin
Joint Institute for High Temperatures
编辑信件的主要联系方式.
Email: vlaskin@inbox.ru
俄罗斯联邦, Moscow, 125412
N. Chernova
Geographic Faculty
Email: vlaskin@inbox.ru
俄罗斯联邦, Moscow, 119991
S. Kiseleva
Geographic Faculty
Email: vlaskin@inbox.ru
俄罗斯联邦, Moscow, 119991
O. Popel’
Joint Institute for High Temperatures
Email: vlaskin@inbox.ru
俄罗斯联邦, Moscow, 125412
A. Zhuk
Joint Institute for High Temperatures
Email: vlaskin@inbox.ru
俄罗斯联邦, Moscow, 125412
补充文件
