Stokes–Brinkman flow and diffusional deposition of nanoparticles onto a layer of porous and composite granules


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A numerical simulation of a three-dimensional Stokes–Brinkman flow in the model filtering membranes, the role of which is played by a monolayer of the contiguous porous permeable homogeneous spherical granules and a monolayer of the granules coated with porous permeable shells, has been performed. Approximation formulas for calculating the resistance forces of the permeable granules to the flow in a layer with square and hexagonal packing have been obtained. The applicability limits of the solutions obtained within the cell model for the evaluating the resistance and permeability of a layer of porous granules have been shown. The diffusional deposition of point particles from the flow in the monolayer of porous granules with a square structure has been studied. The nanoparticle collection efficiencies by granules in a broad range of Péclet diffusion numbers depending on the permeability of granules are calculated.

作者简介

V. Kirsh

Frumkin Institute of Physical Chemistry and Electrochemistry

编辑信件的主要联系方式.
Email: va_kirsch@mail.ru
俄罗斯联邦, Moscow, 119071

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017