A General Hybrid GMDH–PNN Model to Predict Thermal Conductivity for Different Groups of Nanofluids


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this study, a general model for estimating the nanofluids (NFs) thermal conductivity by using a hybrid group method of data handling polynomial neural network (GMDH–PNN) has been investigated. NFs thermal conductivity was modeled as a function of nanoparticle size and volume fraction, nanoparticle and base fluid thermal conductivity, and base fluid temperature. For this purpose, a network that contains 6 hidden layers with 2 inputs in each layer and with training algorithm of least squares regression has been applied. The results showed a good accuracy for estimating the thermal conductivity of NFs with a root mean squared error (RMSE) of 0.03027 for 118 systems containing 1929 training data sets. Furthermore, the RMSE for 27 systems containing 244 data as the validation sets was 0.02843 and also mean absolute percentage errors (MAPE) for training and validation data sets were 4.47 and 4.59%, respectively. Moreover, the proposed hybrid GMDH–PNN model was compared with different models from literature for different groups of NFs. The results indicated an improvement in prediction of thermal conductivity with lower errors compared to the previous models.

Об авторах

Ahmad Azari

Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University; Oil and Gas Research Center, Persian Gulf University

Автор, ответственный за переписку.
Email: azari.ahmad@pgu.ac.ir
Иран, Bushehr, 75169 ; Bushehr, 75169

Saeideh Marhemati

Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University

Email: azari.ahmad@pgu.ac.ir
Иран, Bushehr, 75169

Ahmad Jamekhorshid

Faculty of Petroleum, Gas and Petrochemical Engineering, Persian Gulf University; Oil and Gas Research Center, Persian Gulf University

Email: azari.ahmad@pgu.ac.ir
Иран, Bushehr, 75169 ; Bushehr, 75169

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).