Ermakov–Pinney and Emden–Fowler Equations: New Solutions from Novel Bäcklund Transformations
- 作者: Carillo S.1,2, Zullo F.3
-
隶属关系:
- Dipartimento di Scienze di Base e Applicate per l’Ingegneria
- Instituto Nazionale di Fisica Nucleare
- DICATAM
- 期: 卷 196, 编号 3 (2018)
- 页面: 1268-1281
- 栏目: Article
- URL: https://bakhtiniada.ru/0040-5779/article/view/171904
- DOI: https://doi.org/10.1134/S0040577918090027
- ID: 171904
如何引用文章
详细
We study the class of nonlinear ordinary differential equations y″ y = F(z, y2), where F is a smooth function. Various ordinary differential equations with a well-known importance for applications belong to this class of nonlinear ordinary differential equations. Indeed, the Emden–Fowler equation, the Ermakov–Pinney equation, and the generalized Ermakov equations are among them. We construct Bäcklund transformations and auto-Bäcklund transformations: starting from a trivial solution, these last transformations induce the construction of a ladder of new solutions admitted by the given differential equations. Notably, the highly nonlinear structure of this class of nonlinear ordinary differential equations implies that numerical methods are very difficult to apply.
作者简介
S. Carillo
Dipartimento di Scienze di Base e Applicate per l’Ingegneria; Instituto Nazionale di Fisica Nucleare
编辑信件的主要联系方式.
Email: sandra.carillo@sbai.uniroma1.it
意大利, Rome; Sezione di Roma 1, Rome
F. Zullo
DICATAM
Email: sandra.carillo@sbai.uniroma1.it
意大利, Brescia
补充文件
