Algebraic and geometric structures of analytic partial differential equations
- 作者: Kaptsov O.V.1,2
-
隶属关系:
- Institute of Computational Modeling, Siberian Branch
- Siberian Federal University
- 期: 卷 189, 编号 2 (2016)
- 页面: 1592-1608
- 栏目: Article
- URL: https://bakhtiniada.ru/0040-5779/article/view/170829
- DOI: https://doi.org/10.1134/S0040577916110052
- ID: 170829
如何引用文章
详细
We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.
作者简介
O. Kaptsov
Institute of Computational Modeling, Siberian Branch; Siberian Federal University
编辑信件的主要联系方式.
Email: kaptsov@icm.krasn.ru
俄罗斯联邦, Krasnoyarsk; Krasnoyarsk
补充文件
