Strict Versions of Integrable Hierarchies in Pseudodifference Operators and the Related Cauchy Problems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

In the algebra PsΔ of pseudodifference operators, we consider two deformations of the Lie subalgebra spanned by positive powers of an invertible constant first-degree pseudodifference operator Λ0. The first deformation is by the group in PsΔ corresponding to the Lie subalgebra Ps<0 of elements of negative degree, and the second is by the group corresponding to the Lie subalgebra PsΔ≤0 of elements of degree zero or lower. We require that the evolution equations of both deformations be certain compatible Lax equations that are determined by choosing a Lie subalgebra depending on Λ0 that respectively complements the Lie subalgebra PsΔ<0 or PsΔ≤0. This yields two integrable hierarchies associated with Λ0, where the hierarchy of the wider deformation is called the strict version of the first because of the form of the Lax equations. For Λ0 equal to the matrix of the shift operator, the hierarchy corresponding to the simplest deformation is called the discrete KP hierarchy. We show that the two hierarchies have an equivalent zero-curvature form and conclude by discussing the solvability of the related Cauchy problems.

Sobre autores

G. Helminck

Korteweg-de Vries Institute for Mathematics

Autor responsável pela correspondência
Email: g.f.helminck@uva.nl
Países Baixos, Amsterdam

V. Poberezhny

Institute for Theoretical and Experimental Physics; National Research University Higher School of Economics

Email: g.f.helminck@uva.nl
Rússia, Moscow; Moscow

S. Polenkova

University of Twente

Email: g.f.helminck@uva.nl
Países Baixos, Enschede

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2019