Combinatorial Yang–Baxter maps arising from the tetrahedron equation
- Autores: Kuniba A.1
-
Afiliações:
- University of Tokyo
- Edição: Volume 189, Nº 1 (2016)
- Páginas: 1472-1485
- Seção: Article
- URL: https://bakhtiniada.ru/0040-5779/article/view/170801
- DOI: https://doi.org/10.1134/S004057791610007X
- ID: 170801
Citar
Resumo
We survey the matrix product solutions of the Yang–Baxter equation recently obtained from the tetrahedron equation. They form a family of quantum R-matrices of generalized quantum groups interpolating the symmetric tensor representations of Uq(An−1(1)) and the antisymmetric tensor representations of \({U_{ - {q^{ - 1}}}}\left( {A_{n - 1}^{\left( 1 \right)}} \right)\). We show that at q = 0, they all reduce to the Yang–Baxter maps called combinatorial R-matrices and describe the latter by an explicit algorithm.
Palavras-chave
Sobre autores
A. Kuniba
University of Tokyo
Autor responsável pela correspondência
Email: atsuo@gokutan.c.u-tokyo.ac.jp
Japão, Tokyo
Arquivos suplementares
