Zeros of combinations of Bessel functions and the mean charge of graphene nanodots


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We establish some properties of the zeros of sums and differences of contiguous Bessel functions of the first kind. As a by-product, we also prove that the zeros of the derivatives of Bessel functions of the first kind of different orders are interlaced the same way as the zeros of the Bessel functions themselves. As a physical motivation, we consider gated graphene nanodots subject to Berry–Mondragon boundary conditions. We determine the allowed energy levels and calculate the mean charge at zero temperature. We discuss its dependence on the gate (chemical) potential in detail and also comment on the effect of temperature.

Sobre autores

C. Beneventano

Departamento de Física

Email: ifialk@gmail.com
Argentina, La Plata

I. Fialkovsky

CMCC–Universidade Federal do ABC; Department of Theoretical Physics

Autor responsável pela correspondência
Email: ifialk@gmail.com
Brasil, Santo André, S. P.; St. Petersburg

E. Santangelo

Departamento de Física

Email: ifialk@gmail.com
Argentina, La Plata

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016