Unnormalized Tomograms and Quasidistributions of Quantum States


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider tomograms and quasidistributions, such as the Wigner functions, the Glauber–Sudarshan P-functions, and the Husimi Q-functions, that violate the standard normalization condition for probability distribution functions. We introduce special conditions for theWigner function to determine the tomogram with the Radon transform and study three different examples of states like the de Broglie plane wave, the Moshinsky shutter problem, and the stationary state of a charged particle in a uniform constant electric field. We show that their tomograms and quasidistribution functions expressed in terms of the Dirac delta function, the Airy function, and Fresnel integrals violate the standard normalization condition and the density matrix of the state therefore cannot always be reconstructed. We propose a method that allows circumventing this problem using a special tomogram in the limit form.

Авторлар туралы

V. Man’ko

Lebedev Physical Institute, RAS; Moscow Institute of Physics and Technology

Хат алмасуға жауапты Автор.
Email: kimo1@mail.ru
Ресей, Moscow; Dolgoprudny, Moscow Oblast

L. Markovich

Kharkevich Institute for Information Transmission Problems; Trapeznikov Institute of Control Sciences; International Center for Quantum Optics and Quantum Technologies (the Russian Quantum Center)

Email: kimo1@mail.ru
Ресей, Moscow; Moscow; Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018