Определение оптимальных параметров воздействия при микродиссекции блестящей оболочки эмбриона с помощью инфракрасных фемтосекундных лазерных импульсов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В настоящей работе диссекция блестящей оболочки эмбриона мыши осуществлялась с использованием фемтосекундных лазерных импульсов инфракрасного диапазона спектра (длина волны излучения – 1028 нм, длительность – 280 фс, частота следования импульсов – 2.5 кГц). Работа посвящена исследованию c помощью оптической микроскопии зависимости ширины надреза D, формируемого лазерным излучением, от энергии E лазерных импульсов и скорости υ перемещения луча. Впервые показано, что одно и то же значение ширины надреза может быть получено при различном сочетании указанных параметров. Предложено аналитическое выражение для описания зависимости ширины формируемого надреза на блестящей оболочке D(E, υ) при заданной частоте следования лазерных импульсов 2.5 кГц. Определены границы применимости функционала D(E, υ), которые охватывают значительный диапазон скорости лазерного луча 0.25 ≤ υ ≤ 100 мкм/с, а также перекрывают диапазон энергий от минимальных значений, соответствующих началу появления надреза, вплоть до возникновения оптического пробоя водной среды 115 ≤ E ≤ 190 нДж. Полученные результаты позволяют получить быструю оценку ширины планируемого надреза для любой комбинации параметров E и υ при микрохирургии блестящей оболочки эмбриона в рамках различных вспомогательных репродуктивных технологий.

Полный текст

Доступ закрыт

Об авторах

Д. С. Ситников

ФГБУН Объединенный институт высоких температур РАН

Автор, ответственный за переписку.
Email: Sitnik.ds@gmail.com
Россия, Москва

Д. Е. Мухдина

ФГБУН Объединенный институт высоких температур РАН

Email: Sitnik.ds@gmail.com
Россия, Москва

М. А. Филатов

ФГБУН Объединенный институт высоких температур РАН; ФГБУН Институт биологии гена РАН

Email: Sitnik.ds@gmail.com
Россия, Москва; Москва

Ю. Ю. Силаева

ФГБУН Объединенный институт высоких температур РАН; ФГБУН Институт биологии гена РАН

Email: Sitnik.ds@gmail.com
Россия, Москва; Москва

Список литературы

  1. Ricardo Loret de Mola J., Garside W.T., Bucci J., Tureck R.W., Heyner S. Analysis of the Human Zona Pellucida During Culture: Correlation with Diagnosis and the Preovulatory Hormonal Environment // J. Assist. Reprod. Genet. 1997. V. 14. № 6. P. 332.
  2. Krivonogova A.S., Bruter A.V., Makutina V.A., Okulova Y.D., Ilchuk L.A., Kubekina M.V., Khama-tova A.Y. et al. AAV Infection of Bovine Embryos: Novel, Simple and Effective Tool For Genome Editing // Theriogenology. 2022. V. 193. P. 77.
  3. Davidson L.M., Liu Y., Griffiths T., Jones C., Coward K. Laser Technology in the ART Laboratory: A Narrative Review // Reprod. Biomed. Online. 2019. V. 38. № 5. P. 725.
  4. Tadir Y., Douglas-Hamilton D.H. Laser Effects in the Manipulation of Human Eggs and Embryos for in Vitro Fertilization // Methods Cell Biol. 2007. V. 82. № 6. P. 409.
  5. Schimmel T., Cohen J., Saunders H., Alikani M. Laser-assisted Zona Pellucida Thinning Does Not Facilitate Hatching and May Disrupt the in Vitro Hatching Process: A Morphokinetic Study in the Mouse // Hum. Reprod. 2014. V. 29. № 12. P. 2670.
  6. Douglas-Hamilton D.H., Conia J. Thermal Effects in Laser-Assisted Pre-Embryo Zona Drilling // J. Biomed. Opt. 2001. V. 6. № 2. P. 205.
  7. Чефонов О.В., Овчинников А.В., Агранат М.Б. Электрооптический эффект в кремнии, наведенный импульсом терагерцевого излучения // ТВТ. 2021. Т. 59. № 6. С. 844.
  8. Овчинников А.В., Чефонов О.В., Агранат М.Б. Генерация второй оптической гармоники в кремнии при воздействии терагерцевого импульса с высокой напряженностью электрического поля // ТВТ. 2022. Т. 60. № 5. С. 666.
  9. Vicario C., Shalaby M., Hauri C.P. Subcycle Extreme Nonlinearities in GaP Induced by an Ultrastrong Terahertz Field // Phys. Rev. Lett. 2017. V. 118. № 8. P. 083901.
  10. Jazbinsek M., Puc U., Abina A., Zidansek A. Organic Crystals for THz Photonics // Appl. Sci. 2019. V. 9. № 5. P. 882.
  11. Струлёва Е.В., Комаров П.С., Евлашин С.А., Ашитков С.И. Поведение магниевого сплава при высокоскоростной деформации под действием ударно-волновой нагрузки // ТВТ. 2022. Т. 60. № 5. С. 793.
  12. Струлёва Е.В., Комаров П.С., Евлашин С.А., Ашитков С.И. Высокоскоростное разрушение пленок кобальта под действием нагрузок, создаваемых пикосекундным лазерным импульсом // ТВТ. 2023. Т. 61. № 6. С. 536.
  13. Ашитков С.И., Струлева Е.В., Комаров П.С., Евлашин С.А. Ударное сжатие молибдена при воздействии ультракоротких лазерных импульсов // ТВТ. 2023. Т. 61. № 5. С. 790.
  14. Zuanetti B., McGrane S.D., Bolme C.A., Prakash V. Measurement of Elastic Precursor Decay in Pre-Heated Aluminum Films under Ultra-fast Laser Generated Shocks // J. Appl. Phys. 2018. V. 123. P. 195104.
  15. Колобов Ю.Р., Корнеева Е.А., Кузьменко И.Н., Скоморохов А.Н., Кудряшов С.И., Ионин А.А., Макаров С.В. и др. Влияние поверхностной обработки фемтосекундным импульсным лазерным излучением на механические свойства субмикрокристаллического титана // ЖТФ. 2018. Т. 88. № 3. С. 396.
  16. Ашитков С.И., Иногамов Н.А., Комаров П.С., Петров Ю.В., Ромашевский С.А., Ситников Д.С., Струлёва Е.В., Хохлов В.А. Сверхбыстрый перенос энергии в металлах в сильно неравновесном состоянии, индуцируемом фемтосекундными лазерными импульсами субтераваттной интенсивности // ТВТ. 2022. Т. 60. № 2. С. 218.
  17. Radue E.L., Tomko J.A., Giri A., Braun J.L., Zhou X., Prezhdo O.V., Runnerstrom E.L., Maria J.-P., Hopkins P.E. Hot Electron Thermoreflectance Coefficient of Gold During Electron Phonon Nonequilibrium // ACS Photonics. 2018. V. 5. № 12. P. 4880.
  18. Ильина И.В., Овчинников А.В., Чефонов О.В., Ситников Д.С., Агранат М.Б., Микаелян А.С. Бесконтактная микрохирургия клеточных мембран с помощью фемтосекундных лазерных импульсов для оптоинъекции в клетки заданных веществ // Квантовая электроника. 2013. Т. 43. № 4. С. 365.
  19. Davis A.A., Farrar M.J., Nishimura N., Jin M.M., Schaffer C.B. Optoporation and Genetic Manipulation of Cells Using Femtosecond Laser Pulses // Biophys. J. Biophysical Society. 2013. V. 105. № 4. P. 862.
  20. Kumar P., Nagarajan A., Uchil P.D. Introducing Genes into Cultured Mammalian Cells // Cold Spring Harb. Protoc. 2019. V. 2019. № 11. P. 715.
  21. Agarwal K., Hatch K. Femtosecond Laser Assisted Cataract Surgery: A Review // Semin. Ophthalmol. 2021. V. 36. № 8. P. 618.
  22. Latz C., Asshauer T., Rathjen C., Mirshahi A. Femtosecond-laser Assisted Surgery of the Eye: Overview and Impact of the Low-energy Concept // Micromachines. 2021. V. 12. № 2. P. 122.
  23. Ilina I.V., Sitnikov D.S. From Zygote to Blastocyst: Application of Ultrashort Lasers in the Field of Assisted Reproduction and Developmental Biology // Diagnostics. 2021. V. 11. № 10. P. 1897.
  24. Ilina I.V., Sitnikov D.S. Application of Ultrashort Lasers in Developmental Biology: A Review // Photonics. 2022. V. 9. № 12. P. 914.
  25. Raghunathan R., Singh M., Dickinson M.E., Larin K.V. Optical Coherence Tomography for Embryonic Imaging: A Review // J. Biomed. Opt. 2016. V. 21. № 5. P. 50902.
  26. Borile G., Sandrin D., Filippi A., Anderson K.I., Romanato F. Label-free Multiphoton Microscopy: Much More Than Fancy Images // Int. J. Mol. Sci. 2021. V. 22. № 5. P. 2657.
  27. Vogel A., Venugopalan V. Mechanisms of Pulsed Laser Ablation of Biological Tissues // Chem. Rev. 2003. V. 103. № 2. P. 577.
  28. Vogel A., Noack J., Hüttman G., Paltauf G. Mechanisms of Femtosecond Laser Nanosurgery of Cells and Tissues // Appl. Phys. B. 2005. V. 81. № 8. P. 1015.
  29. Ситников Д.С., Ильина И.В., Пронкин А.А. Оценка теплового воздействия лазерных импульсов фемто- и миллисекундной длительности при выполнении микрохирургических процедур на эмбрионах млекопитающих // Квантовая электроника. 2022. Т. 52. № 5. С. 482.
  30. Ilina I.V., Khramova Y.V., Filatov M.A., Sitnikov D.S. Application of Femtosecond Laser Microsurgery in Assisted Reproductive Technologies for Preimplantation Embryo Tagging // Biomed. Opt. Exp. 2019. V. 10. № 6. P. 2985.
  31. Ilina I.V., Khramova Y.V., Filatov M.A., Sitnikov D.S. Femtosecond Laser Is Effective Tool for Zona Pellucida Engraving and Tagging of Preimplantation Mammalian Embryos // J. Assist. Reprod. Genet. 2019. V. 36. № 6. P. 1251.
  32. Ilina I.V., Khramova Y.V., Filatov M.A., Semenova M.L., Sitnikov D.S. Application of Femtosecond Laser Scalpel and Optical Tweezers for Noncontact Biopsy of Late Preimplantation Embryos // High Temp. 2015. V. 53. № 6. P. 804.
  33. Ilina I.V., Khramova Y.V., Filatov M.A., Semenova M.L., Sitnikov D.S. Femtosecond Laser Assisted Hatching: Dependence of Zona Pellucida Drilling Efficiency and Embryo Development on Laser Wavelength and Pulse Energy // High Temp. 2016. V. 54. № 1. P. 46.
  34. Sitnikov D.S., Filatov M.A., Ilina I.V. Optimal Exposure Parameters for Microsurgery of Embryo Zona Pellucida Using Femtosecond Laser Pulses // Appl. Sci. 2023. V. 13. № 20. P. 11204.
  35. Ильина И.В., Овчинников А.В., Ситников Д.С., Ракитянский М.М., Агранат М.Б., Храмова Ю.В., Семенова М.Л. Применение фемтосекундных лазерных импульсов в биомедицинских клеточных технологиях // ТВТ. 2013. Т. 51. № 2. С. 198.
  36. Sitnikov D.S., Ovchinnikov A.V., Ilina I.V., Chefonov O.V., Agranat M.B. Laser Microsurgery of Cells by Femtosecond Laser Scalpel and Optical Tweezers // High Temp. 2014. V. 52. № 6. P. 803.
  37. Ситников Д.С., Ильина И.В., Филатов М.А., Силаева Ю.Ю. Исследование влияния микродиссекции блестящей оболочки эмбрионов млекопитающих на ее толщину // Вестн. РГМУ. 2023. № 1. С. 41.
  38. Liu J.M. Simple Technique for Measurements of Pulsed Gaussian-beam Spot Sizes // Opt. Lett. 1982. V. 7. № 5. P. 196.
  39. Ilina I.V., Khramova Y.V., Ivanova A.D., Filatov M.A., Silaeva Y.Y., Deykin A. V., Sitnikov D.S. Controlled Hatching at the Prescribed Site Using Femtosecond Laser for Zona Pellucida Drilling at the Early Blastocyst Stage // J. Assist. Reprod. Genet. 2021. V. 38. № 2. P. 517.
  40. Joglekar A.P., Liu H.H., Meyhofer E., Mourou G., Hunt A.J. Optics at Critical Intensity: Applications to Nanomorphing // Proc. Natl. Acad. Sci. 2004. V. 101. № 16. P. 5856.
  41. Hoy C.L., Ferhanoglu O., Yildirim M., Kim K.H., Karajanagi S.S., Chan K.M.C., Kobler J.B., Zeitels S.M., Ben-Yakar A. Clinical Ultrafast Laser Surgery: Recent Advances and Future Directions // IEEE J. Sel. Top. Quantum Electron. 2014. V. 20. № 2. P. 242.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Примеры истончения (а) и формирования (б) сквозного отверстия в блестящей оболочке [5]: система Fertilase™ (MTM, Germany), 1.48 мкм, мощность – 100 мВт, длительность импульса – 5 мс, размер одиночной перфорации – 5 мкм.

Скачать (107KB)
3. Рис. 2. Схема экспериментальной установки: 1 – фемтосекундный лазер; 2 – узел ослабления лазерного излучения; 3 – стеклянная пластина; 4 – фотодиод; 5 – узел телескопа; 6 – механический прерыватель лазерного излучения; 7, 8 – зеркала на длину волны лазерного излучения; 9 – микрообъектив; 10 – моторизованный предметный столик; 11 – чашка Петри с эмбрионами; 12 – конденсор микроскопа; 13 – осветитель; 14 – видеокамера; 15 – инвертированный микроскоп.

Скачать (73KB)
4. Рис. 3. Измерение размера лазерного пятна: (а) мишенный узел: 1 – микрообъектив, 2 – чашка Петри со стеклянным дном, 3 – проставки, 4 – вода, 5 – мишень; (б) – зависимость квадрата размера кратера  от логарифма энергии ln(E): 1, 2 – размеры вдоль большой и малой осей кратера.

Скачать (90KB)
5. Рис. 4. Микрофотография (а) фрагмента блестящей оболочки эмбриона после выполнения микрохирургии при различных энергиях лазерных импульсов (υ = 0.01 мм/с, f = 2.5 кГц); Emin = 134 нДж, Emax = 190 нДж; прямоугольник ограничивает область для построения профилей сечения; (б) осредненный профиль сечения: D1, D2 — ширины надреза, измеренные по среднему уровню яркости блестящей оболочки и от максимума светлого “бортика” на профиле соответственно.

Скачать (127KB)
6. Рис. 5. Зависимости квадрата ширины надреза  от логарифма энергии лазерных импульсов ln(E) при f = 2.5 кГц и различных скоростях перемещения: 1 – υ = 0.0025 мм/с, 3 – 0.01, 5 – 0.05; 2, 4, 6 – линейные аппроксимации.

Скачать (75KB)
7. Рис. 6. Зависимости ширины надреза блестящей оболочки от скорости лазерного пучка Dav(υ) при f = 2.5 кГц и различных значениях энергии лазерного импульса: 1 – E = 136 нДж; 2 – 152; 3 – 174; 4* – 134, 141, 151, 159, 167, 173, 190; 5** – 115, 135, 151, 167, 185; 6*** – 152, 159, 167, 174, 189; 7 – область оптического пробоя; данные для E*, E**, E*** взяты с рис. 5.

Скачать (95KB)
8. Рис. 7. Зависимость ширины надреза блестящей оболочки D от энергии лазерных импульсов Е и скорости υ: синие маркеры – экспериментальные данные, представленные на рис. 6; поверхность – аппроксимация уравнением (3).

Скачать (211KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».