Clique Numbers of Random Subgraphs of Some Distance Graphs
- Autores: Gusev A.S.1
-
Afiliações:
- Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics
- Edição: Volume 54, Nº 2 (2018)
- Páginas: 165-175
- Seção: Large Systems
- URL: https://bakhtiniada.ru/0032-9460/article/view/166505
- DOI: https://doi.org/10.1134/S0032946018020059
- ID: 166505
Citar
Resumo
We consider a class of graphs G(n, r, s) = (V (n, r),E(n, r, s)) defined as follows:
\(V(n,r) = \{ x = ({x_{1,}},{x_2}...{x_n}):{x_i} \in \{ 0,1\} ,{x_{1,}} + {x_2} + ... + {x_n} = r\} ,E(n,r,s) = \{ \{ x,y\} :(x,y) = s\} \)![]()
where (x, y) is the Euclidean scalar product. We study random subgraphs G(G(n, r, s), p) with edges independently chosen from the set E(n, r, s) with probability p each. We find nontrivial lower and upper bounds on the clique number of such graphs.Sobre autores
A. Gusev
Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics
Autor responsável pela correspondência
Email: aretalogus@inbox.ru
Rússia, Moscow
Arquivos suplementares
