On the Smallest Size of an Almost Complete Subset of a Conic in PG(2, q) and Extendability of Reed–Solomon Codes


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Abstract—In the projective plane PG(2, q), a subset S of a conic C is said to be almost complete if it can be extended to a larger arc in PG(2, q) only by the points of C \ S and by the nucleus of C when q is even. We obtain new upper bounds on the smallest size t(q) of an almost complete subset of a conic, in particular,

\(t(q) < \sqrt {q(3lnq + lnlnq + ln3)} + \sqrt {\frac{q}{{3\ln q}}} + 4 \sim \sqrt {3q\ln q} ,t(q) < 1.835\sqrt {q\ln q.} \)
The new bounds are used to extend the set of pairs (N, q) for which it is proved that every normal rational curve in the projective space PG(N, q) is a complete (q+1)-arc, or equivalently, that no [q+1,N+1, q−N+1]q generalized doubly-extended Reed–Solomon code can be extended to a [q + 2,N + 1, qN + 2]q maximum distance separable code.

Sobre autores

D. Bartoli

Department of Mathematics and Computer Sciences

Autor responsável pela correspondência
Email: daniele.bartoli@unipg.it
Itália, Perugia

A. Davydov

Kharkevich Institute for Information Transmission Problems

Email: daniele.bartoli@unipg.it
Rússia, Moscow

S. Marcugini

Department of Mathematics and Computer Sciences

Email: daniele.bartoli@unipg.it
Itália, Perugia

F. Pambianco

Department of Mathematics and Computer Sciences

Email: daniele.bartoli@unipg.it
Itália, Perugia

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Inc., 2018