On the Smallest Size of an Almost Complete Subset of a Conic in PG(2, q) and Extendability of Reed–Solomon Codes
- Autores: Bartoli D.1, Davydov A.A.2, Marcugini S.1, Pambianco F.1
-
Afiliações:
- Department of Mathematics and Computer Sciences
- Kharkevich Institute for Information Transmission Problems
- Edição: Volume 54, Nº 2 (2018)
- Páginas: 101-115
- Seção: Coding Theory
- URL: https://bakhtiniada.ru/0032-9460/article/view/166496
- DOI: https://doi.org/10.1134/S0032946018020011
- ID: 166496
Citar
Resumo
Abstract—In the projective plane PG(2, q), a subset S of a conic C is said to be almost complete if it can be extended to a larger arc in PG(2, q) only by the points of C \ S and by the nucleus of C when q is even. We obtain new upper bounds on the smallest size t(q) of an almost complete subset of a conic, in particular,
Sobre autores
D. Bartoli
Department of Mathematics and Computer Sciences
Autor responsável pela correspondência
Email: daniele.bartoli@unipg.it
Itália, Perugia
A. Davydov
Kharkevich Institute for Information Transmission Problems
Email: daniele.bartoli@unipg.it
Rússia, Moscow
S. Marcugini
Department of Mathematics and Computer Sciences
Email: daniele.bartoli@unipg.it
Itália, Perugia
F. Pambianco
Department of Mathematics and Computer Sciences
Email: daniele.bartoli@unipg.it
Itália, Perugia
Arquivos suplementares
