Analytical investigation of rotational autofrettage of hollow cylinders based on unified yield criterion

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The strengthening of a hollow cylindrical tube by using rotational autofrettage is investigated. The problem statement is based on the theory of infinitesimal elastic-plastic deformations, the unified yield criterion, the associated flow rule and the law of linear isotropic hardening. During unloading, the cylinder material can exhibit the Bauschinger effect. Exact analytical solutions are obtained for the stages of loading, unloading and operation. It is established that the material parameter reflecting the influence of the intermediate principal stress has a significant effect on the stress-strain state in the cylinder and the choice of optimal autofrettage parameters.

Авторлар туралы

A. Prokudin

Institute of Machinery and Metallurgy of the Khabarovsk Federal Research Center FEB RAS

Хат алмасуға жауапты Автор.
Email: sunbeam_85@mail.ru
Komsomolsk-na-Amure, Russia

A. Burenin

Institute of Machinery and Metallurgy of the Khabarovsk Federal Research Center FEB RAS

Email: burenin@iacp.dvo.ru
Komsomolsk-na-Amure, Russia

Әдебиет тізімі

  1. Shufen R., Dixit U.S. A Review of Theoretical and Experimental Research on Various Autofrettage Processes // J. Press. Vessel Technol. 2018. Vol. 140, no. 5. 050802. https://doi.org/10.1115/1.4039206. EDN: YIMATJ
  2. Saint-Vénant A.J.C.B. Sur l’intensité desforces capables de déformer, avec continuité, des blocs ductiles, cylindriques, pleins ou évidés, et placés dans diverses circonstanc // Comptes Rendues Académie Sci. 1872. Vol. 74. P. 1009–1015.
  3. Jacob L. La Résistance et L’équilibre Élastique des Tubes Frettés // Meml. Artillerie Nav. 1907. Vol. 1. P. 43–155.
  4. Kendall D.P. A Short History of High Pressure Technology From Bridgman to Division 3 // J. Press. Vessel Technol. 2000. Vol. 122, no. 3. P. 229–233. https://doi.org/10.1115/1.556178
  5. Davidson T.E., Barton C.S., Reiner A.N., Kendall D.P. New approach to the autofrettage of high-strength cylinders // Exp. Mech. 1962. Vol. 2, no. 2. P. 33–40. https://doi.org/10.1007/BF02325691. EDN: HRXQOU
  6. Zhan R., Tao C., Han L., Huang Y., Han D. The Residual Stress and Its Influence on the Fatigue Strength Induced by Explosive Autofrettage // Explos. Shock Waves. 2005. Vol. 25, no. 3. P. 239–243. https://doi.org/10.11883/1001-1455(2005)03-0239-05
  7. Shufen R., Mahanta N., Dixit U.S. Development of a Thermal Autofrettage Setup to Generate Compressive Residual Stresses on the Surfaces of a Cylinder // J. Press. Vessel Technol. 2019. Vol. 141, no. 5. 051403. https://doi.org/10.1115/1.4044119
  8. Zare H.R., Darijani H. A novel autofrettage method for strengthening and design of thick-walled cylinders // Mater. Des. 2016. Vol. 105. P. 366–374. https://doi.org/10.1016/j.matdes.2016.05.062
  9. Zare H.R., Darijani H. Strengthening and design of the linear hardening thick-walled cylinders using the new method of rotational autofrettage // Int. J. Mech. Sci. 2017. Vol. 124–125. P. 1–8. https://doi.org/10.1016/j.ijmecsci.2017.02.015
  10. Kamal S.M., Perl M., Bharali D. Generalized plane strain study of rotational autofrettage of thick-walled cylinders-Part I: Theoretical analysis // J. Press. Vessel Technol. 2019. Vol. 141, no. 5. 051201. https://doi.org/10.1115/1.4043591
  11. Kamal S.M., Perl M. Generalized plane strain study of rotational autofrettage of thick-walled cylinders-Part II: Numerical evaluation // J. Press. Vessel Technol. 2019. Vol. 141, no. 5. 051202. https://doi.org/10.1115/1.4044173
  12. Shufen R., Dixit U.S. Effect of length in rotational autofrettage of long cylinders with free ends // Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022. Vol. 236, no. 6. P. 2981–2994. https://doi.org/10.1177/09544062211034205. EDN: FQCEGR
  13. Kamal S.M., Aziz F. Estimation of the Stresses in Rotational Autofrettage of Thick-Walled Pressure Vessels Using von Mises Yield Criterion // Proceedings of ASME 2021 Pressure Vessels & Piping Conference. Volume 2: Computer Technology and Bolted Joints; Design and Analysis. ASME Digital Collection, 2021. P. PVP2021-61888. https://doi.org/10.1115/PVP2021-61888
  14. Mack W. Rotating elastic-plastic tube with free ends // Int. J. Solids Struct. 1991. Vol. 27, no. 11. P. 1461–1476. https://doi.org/10.1016/0020-7683(91)90042-E
  15. Eraslan A.N., Mack W. A computational procedure for estimating residual stresses and secondary plastic flow limits in nonlinearly strain hardening rotating shafts // Forsch. Im Ingenieurwesen. 2005. Vol. 69, no. 2. P. 65–75. https://doi.org/10.1007/s10010-004-0138-7. EDN: NNMVIY
  16. Eraslan A.N., Akis T. The Stress Response of Partially Plastic Rotating FGM Hollow Shafts: Analytical Treatment for Axially Constrained Ends // Mech. Based Des. Struct. Mach. 2006. Vol. 34, no. 3. P. 241–260. https://doi.org/10.1080/15397730600779285
  17. Hu Z., Parker A.P. Swage autofrettage analysis — Current status and future prospects // Int. J. Press. Vessels Pip. 2019. Vol. 171. P. 233–241. https://doi.org/10.1016/j.ijpvp.2019.03.007
  18. Molaie M., Darijani H., Bahreman M., Hosseini S.M. Autofrettage of nonlinear strain-hardening cylinders using the proposed analytical solution for stresses // Int. J. Mech. Sci. 2018. Vol. 141. P. 450–460. https://doi.org/10.1016/j.ijmecsci.2018.04.019
  19. Rynkovskaya M., Alexandrov S., Lang L. A Theory of Autofrettage for Open-Ended, Polar Orthotropic Cylinders // Symmetry. 2019. Vol. 11, no. 2. P. 280. https://doi.org/10.3390/sym11020280. EDN: FHLLRW
  20. Seifi R. Maximizing working pressure of autofrettaged three layer compound cylinders with considering Bauschinger effect and reverse yielding // Meccanica. 2018. Vol. 53, no. 10. P. 2485–2501. https://doi.org/10.1007/s11012-018-0834-2. EDN: HYVFRX
  21. Hu Z., Parker A.P. Implementation and validation of true material constitutive model for accurate modeling of thick-walled cylinder swage autofrettage // Int. J. Press. Vessels Pip. 2021. Vol. 191. 104378. https://doi.org/10.1016/j.ijpvp.2021.104378. EDN: MSVATL
  22. Hu Z., Parker A.P. Use of a True Material Constitutive Model for Stress Analysis of a Swage Autofrettaged Tube including ASME Code Comparison // J. Press. Vessel Technol. 2022. Vol. 144, no. 2. 024502. https://doi.org/10.1115/1.4051688. EDN: KDYNYE
  23. Zhang Z., Yang G., Wang X., Chen Q. Residual Stress Calculation of Hydraulic Autofrettage Thick-Walled Tube Based on a Revised Kinematic Hardening Model // J. Press. Vessel Technol. 2025. Vol. 147, no. 1. 011501. https://doi.org/10.1115/1.4067261. EDN: PVTXCJ
  24. Прокудин А.Н. Влияние переменного модуля Юнга на остаточные напряжения, вызванные ротационным автофретированием полого цилиндра с закрепленными торцами // Вестник Пермского Национального Исследовательского Политехнического Университета Механика. 2023. № 6. С. 91–103. https://doi.org/10.15593/perm.mech/2023.6.09. EDN: JGMQTT
  25. Akhavanfar S., Darijani H., Darijani F. Constitutive modeling of high strength steels; application to the analytically strengthening of thick-walled tubes using the rotational autofrettage // Eng. Struct. 2023. Vol. 278. 115516. https://doi.org/10.1016/j.engstruct.2022.115516. EDN: DDWTQS
  26. Shufen R., Singh N.P., Dixit U.S. Thermally Assisted Rotational Autofrettage of Long Cylinders With Free Ends // J. Press. Vessel Technol. 2023. Vol. 145, no. 5. 051303. https://doi.org/10.1115/1.4063095. EDN: FNFXDX
  27. Aziz F., Kamal S.M., Dixit U.S. Enhancing Fatigue Life of Thick-Walled Cylinders through a Hybrid Rotational-Swage Autofrettage-Induced Residual Stresses // J. Mater. Eng. Perform. 2024. https://doi.org/10.1007/s11665-023-09090-y. EDN: QTTUIK
  28. Ишлинский А.Ю. Гипотеза прочности формоизменения // Ученые Записки МГУ. 1940. № 46. С. 104–114.
  29. Ивлев Д.Д., Быковцев Г.И. Теория упрочняющегося пластического тела. М.: Наука, 1971. 232 c.
  30. Prokudin A.N. Exact elastoplastic analysis of a rotating hollow cylinder made of power-law hardening material // Mater. Phys. Mech. 2023. Vol. 51, no. 2. P. 96–111. https://doi.org/10.18149/MPM.5122023_9. EDN: FEBDDA

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).