Spatial diversity of microbiological and agrochemical properties of soils in landscape analogs of Zaryadye Park

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Zaryadye Park is a unique example of landscaping using constructed soils (technosols) based on soils and soil substrates typical of zonal ecosystems from various climatic zones of the European part of Russia. Soil samples (0–10 cm) from landscape analogs were analyzed to determine a range of agrochemical (pH, organic matter content, and nutrient levels) and microbiological (microbial activity, functional diversity, diversity of cultivable mycobiota, including opportunistic pathogens) parameters. The obtained soil parameters were compared with those of zonal soils from corresponding natural landscapes. For most landscapes, a decrease in organic matter content, an increase in pH and available phosphorus levels, and a significant reduction in potassium content, respiratory activity, and microbial biomass were observed compared to natural analogs. Functional diversity increased in soils with a more acidic pH. The cultivated microfungal community in the landscape analogs exhibited low species diversity (Shannon indices up to 1.9) and specific mycocomplex compositions (Jaccard indices up to 0.5). In September, the number of microfungal species increased in most zones, accompanied by a rise in the proportion of conditionally pathogenic species (from 44% in May to 68% in September) and an overall decline in species richness (from 26 species in May to 19 species in September). The conducted analysis demonstrated that soil constructions mimicking the soil cover of corresponding natural landscapes, under unified climatic conditions and intensive anthropogenic pressures, form unique biotopes distinct from both natural ecosystems and standard urban parks. These biotopes possess specific chemical and microbiological compositions, requiring thorough monitoring and management to maintain ecological sustainability.

Texto integral

Acesso é fechado

Sobre autores

E. Kozlova

RUDN University

Email: ekaterina.vi.ko@gmail.com
ORCID ID: 0000-0003-4325-6930
Rússia, Moscow, 117198

M. Korneykova

RUDN University; Institute of North Industrial Ecology Problems, Kola Science Center of the Russian Academy of Sciences

Email: ekaterina.vi.ko@gmail.com
Rússia, Moscow, 117198; Apatity, 184209

V. Vasenev

RUDN University; Soil Geography and Landscape Group, Wageningen University

Autor responsável pela correspondência
Email: ekaterina.vi.ko@gmail.com

Soil Geography and Landscape Group

Rússia, Moscow, 117198; Wageningen, Netherlands

А. Soshina

RUDN University; Institute of North Industrial Ecology Problems, Kola Science Center of the Russian Academy of Sciences

Email: ekaterina.vi.ko@gmail.com
Rússia, Moscow, 117198; Apatity, 184209

M. Vasileva

RUDN University

Email: ekaterina.vi.ko@gmail.com
Rússia, Moscow, 117198

P. Davydova

RUDN University

Email: ekaterina.vi.ko@gmail.com
Rússia, Moscow, 117198

I. Krokhmal

State Autonomous Cultural Institution of Moscow “Zaryadye Park”

Email: ekaterina.vi.ko@gmail.com
Rússia, Moscow, 109012

Bibliografia

  1. Атлас почв Российской Федерации https://soil-db.ru/soilatlas Accessed 29.09.24.
  2. Берсенева О.А., Саловарова, В.П., Приставка, А.А. Почвенные микромицеты основных природных зон // Известия Иркутского гос. ун-та. 2008. Т. 1. № 1. С. 3–9.
  3. Закон города Москвы от 4 июля 2007 года № 31 “О городских почвах” (с изменениями на 20 февраля 2019 года).
  4. Звягинцев Д.Г. Почва и микроорганизмы. М.: Изд-во МГУ, 1987. 286 с.
  5. Звягинцев Д.Г. Методы почвенной микробиологии и биохимии. М.: Изд-во МГУ, 1991. 302 с.
  6. Иванова А.Е., Суханова И.С., Марфенина О.Е. Функциональное разнообразие микроскопических грибов в городских почвах разного возраста формирования // Микология и фитопатология. 2008. Т. 42. № 5. С. 450–460.
  7. Кураков А.В. Методы выделения и характеристика комплексов микроскопических грибов наземных экосистем. М.: Макс Пресс, 2001. 92 c.
  8. Марфенина О.Е. Антропогенная экология почвенных грибов. М.: Медицина для всех, 2005. 196 с.
  9. Марфенина О.Е., Иванова А.Е., Звягинцев Д.Г. Реакция сообществ почвенных микроскопических грибов на рекреационное воздействие в лесных биогеоценозах // Стационарные исследования влияния рекреации на лесные биогеоценозы. Тула: Гриф и К, 2008. С. 303–335.
  10. Марьина-Чермных О.Г., Марьин Г.С., Апаева Н.Н. Влияние интенсивного антропогенного воздействия на формирование микромицетных сообществ и фитотоксичность почвы // Вестник Алтайского гос. аграрн. ун-та. 2012. Т. 10. № 96. С. 72–77.
  11. Постановление 743-ПП “Правила создания, содержания и охраны зеленых насаждений города Москвы” от 10.09.2002 (с поправками от 17.06.2011).
  12. Постановление Правительства Москвы No 514-ПП “О повышении качества почвогрунтов в городе Москве” от 27.07.2004 (с поправками от 01.06.2018).
  13. Abrego N., Crosier B., Somervuo P., Ivanova N., Abrahamyan A., Abdi A., Ovaskainen O. Fungal communities decline with urbanization—more in air than in soil // ISME J. 2020. Т. 14. № 11. P. 2806–2815.
  14. Adhikari K., Hartemink A.E. Linking soils to ecosystem services – A global review // Geoderma. 2016. V. 262. P. 101–111.
  15. Aislabie J., Deslippe J.R., Dymond J.R. Soil microbes and their contribution to soil services // Ecosystem services in New Zealand – conditions and trends. 2013. V. 1. №. 12. P. 143–161.
  16. Ananyeva N.D., Ivashchenko K.V., Sushko S.V. Microbial indicators of urban soils and their role in the assessment of ecosystem services: a review // Eurasian Soil Science. 2021. V. 54. № 10. P. 1517–1531.
  17. Ananyeva N.D., Sushko S.V., Ivashchenko K.V., Vasenev V.I. Soil Microbial respiration in subtaiga and forest-steppe ecosystems of European Russia: field and laboratory approaches // Eurasian Soil Science. 2020. V. 53. № 10. P. 1492–1501.
  18. Ananyeva N.D., Susyan E.A., Chernova O.V., Wirth S. Microbial respiration activities of soils from different climatic regions of European Russia // Eur. J. Soil Biol. 2008. V. 44. № 2. P. 147–157.
  19. Ananyeva N.D., Susyan E.A., Gavrilenko E.G. Determination of the soil microbial biomass carbon using the method of substrate-induced respiration // Eurasian Soil Science. 2011. V. 44. № 11. P. 1215–1221.
  20. Anderson T.H., Domsch K.H. Soil microbial biomass: The eco-physiological approach // Soil Biol. Biochem. 2010. V. 42. № 12. P. 2039–2043.
  21. Ashraf M.N., Waqas M.A., Rahman S. Microbial metabolic quotient is a dynamic indicator of soil health: trends, implications and perspectives (review) // Eurasian Soil Science. 2022. V. 55. № 12. P. 1794–1803.
  22. Brianskaia I.P., Vasenev V.I., Brykova R.A., Markelova V.N., Ushakova N.V., Gosse D.D., et al. Analysis of volume and properties of imported soils for prediction of carbon stocks in soil constructions in the Moscow metropolis // Eurasian Soil Science. 2020. V. 53. № 12. P. 1809–1817.
  23. Brunner I., Plotze, M., Rieder S., Zumsteg A., Furrer G., Frey B. Pioneering fungi from the damma glacier forefield in the Swiss Alps can promote granite weathering // Geobiology. 2011. V. 9. № 3. P. 266–279. https://doi.org/10.1111/j.1472-4669.2011.00274.x
  24. Deeb M., Groffman P.M., Blouin M., Egendorf S.P., Vergnes A., Vasenev V., Séré G. Constructed Technosols are key to the sustainable development of urban green infrastructure // Soil Discussions. 2019. P. 1–36.
  25. Deeb M., Groffman P.M., Blouin M., Egendorf S.P., Vergnes A., Vasenev V., Séré, G. Using constructed soils for green infrastructure – Challenges and limitations // Soil. 2020. V. 6. № 2. P. 413–434.
  26. Devictor V., Julliard R., Couvet D., Lee, A., Jiguet F. Functional homogenization effect of urbanization on bird communities // Conservation Biology. 2007. V. 21. № 3. P. 741-751.
  27. Domsch K.H., Gams W., Anderson T.-H. Compendium of Soil Fungi. Verlag: Eching, 2007. 672 p.
  28. Ersoy Mirici, M. The ecosystem services and green infrastructure: a systematic review and the gap of economic valuation // Sustainability (Switzerland). 2022. V. 14. № 1. P. 517.
  29. Fulthorpe R., MacIvor J.S., Jia P., Yasui S.L.E. The green roof microbiome: Improving plant survival for ecosystem service delivery // Frontiers in Ecology and Evolution. 2018 V. 6. № 5. https://doi.org/10.3389/fevo.2018.00005
  30. García C., Hernandez T., Costa F. Potential use of dehydrogenase activity as an index of microbial activity in degraded soils // Commun. Soil Sci. Plant Analysis. 1997. V. 28. № 1–2. P. 123–134.
  31. Giusiano G.E., Piontelli E., Fernández M.S., Mangiaterra M.L., Cattana M.E., Kocsubé, S., Varga J. Biodiversity of species of Aspergillus section Fumigati in semi-desert soils in Argentina. Rev. Argent // Microbiol. 2017. V. 49. P. 247–254.
  32. Hénault, A., Heim, A., Brisson, J., Dagenais, D., De Bellis, T., Chagnon, P.L. Stressful, isolated, yet diverse: Green roofs have rich microbiomes that are not dominated by oligotrophic taxa // Environ. Microbiol. Rep. 2022. V. 14. № 5. P. 766–774.
  33. Hassan N., Rafiq M., Hayat M., Shah A.A., Hasan F. Psychrophilic and psychrotrophic fungi: a comprehensive review // Rev. Environ. Sci. Bio/Technol. 2016. V. 15. P. 147–172. https://doi.org/10.1007/s11157-016-9395–9
  34. Hoog G.C. de, Guarro J., Gene J., Figueras M.J. Atlas of clinical fungi. Spain: Reus, 2000. 1126 p.
  35. Ibáñez-Álamo J.D., Rubio E., Benedetti Y., Morelli F. Global loss of avian evolutionary uniqueness in urban areas // Global Change Biology. 2017. V. 23. № 8. P. 2990–2998.
  36. Iliushin V.A., Kirtsideli I.Y., Vlasov D.Y. Diversity of culturable microfungi of coal mine spoil tips in Svalbard // Polar Sci. 2022. V. 32. P. 100793.
  37. Index Fungorum. CABI Bioscience, 2021. http://www.indexfungorum.org. Accessed 29.09.24.
  38. Ivashchenko K., Lepore, E., Vasenev V., Ananyeva N., Demina S., Khabibullina F., Dovletyarova E. Assessing soil-like materials for ecosystem services provided by constructed technosols // Land. 2021. V. 10. № 11. P. 1185.
  39. Marfenina O.E., Makarova N.V., Ivanova A.E. Opportunistic fungi in soils and surface air of a megalopolis (for the Tushino Region, Moscow) // Microbiology (N.Y). 2011. V. 80. № 6. P. 870–876.
  40. Marinari S., Bonifacio E., Moscatelli M.C., Falsone G., Antisari L.V., Vianello G. Soil development and microbial functional diversity: Proposal for a methodological approach // Geoderma. 2013. V. 192. № 1. P. 437–445.
  41. McGuire K.L., Payne S.G., Palmer M.I., Gillikin C.M., Keefe D., Kim S.J. et al. Digging the New York city skyline: soil fungal communities in green roofs and city parks // PLoS One. 2013. V. 8. P. e58020.
  42. McKinney M.L. Urbanization as a major cause of biotic homogenization // Biological Conservation. 2006. V. 127. № 3. P. 247-260.
  43. Minnikova, T., Kolesnikov, S., Khoroshaev, D., Tsepina, N., Evstegneeva, N., Timoshenko, A. Assessment of the Health of Soils Contaminated with Ag, Bi, Tl, and Te by the Intensity of Microbiological Activity // Life. 2023. V. 13. № 7. P. 1592.
  44. Molineux, C.J., Gange, A.C., Connop, S.P., Newport, D.J. Are microbial communities in green roof substrates comparable to those in post-industrial sites?—a preliminary study // Urban Ecosystem. 2015. V. 18. P. 1245–1260.
  45. Morel J.L., Chenu C., Lorenz K. Ecosystem services provided by soils of urban, industrial, traffic, mining, and military areas (SUITMAs) // J. Soils Sediments. 2015. V. 15. № 8. P. 1659–1666.
  46. Moscatelli M.C., Secondi L., Marabottini R., Papp R., Stazi S. R., Mania E., Marinari S. Assessment of soil microbial functional diversity: land use and soil properties affect CLPP-MicroResp and enzymes responses // Pedobiologia (Jena). 2018. V. 66. P. 36–42.
  47. Nji Q.N., Babalola O.O., Mwanza M. Soil Aspergillus species, pathogenicity and control perspectives // Journal of Fungi. 2023. V. 9. №. 7. P. 766.
  48. Ojiambo P.S., Battilani P., Cary J.W., Blum B.H., Carbone I. Cultural and genetic approaches to manage aflatoxin contamination: Recent insights provide opportunities for improved control // Phytopathology. 2018. V. 108. P. 1024–1037.
  49. Raper K.B., Thom C., Fennell D.J. A manual of the Penicillia. Baltimore: Williams Wilkins Company, 1949. 875 p.
  50. Rokia S., Séré G., Schwartz C., Deeb M., Fournier F., Nehls T., Damas O., Vidal-Beaudet L. Modelling agronomic properties of Technosols constructed with urban wastes // Waste Management. 2014. V. 34. № 11. P. 2155–2162. https://doi.org/10.1016/j.wasman.2013.12.016
  51. Séré G., Schwartz C., Ouvrard S., Renat J. C., Watteau F., Villemin G., Morel J. L. Early pedogenic evolution of constructed Technosols // J. Soils Sediments. 2010. V. 10. № 7. P. 1246–1254. https://doi.org/10.1007/s11368-010–0206-6
  52. Shumilov O.I., Kasatkina E.A., Kirtsideli I.Y., Makarov D.V. Tolerance of rare-earth elements in extremophile fungus Umbelopsis isabellina from polar loparite ore tailings in Northwestern Russia // J. Fungi. 2023. V. 9. №. 5. P. 506.
  53. Smagin A.V., Sadovnikova N.B. Creation of soil-like constructions // Eurasian Soil Science. 2015. V. 48. № 9. P. 981–990. https://doi.org/10.1134/S1064229315090100
  54. Susyan E.A., Wirth S., Ananyeva N.D., Stolnikova E.V. Forest succession on abandoned arable soils in European Russia – Impacts on microbial biomass, fungal-bacterial ratio, and basal CO2 respiration activity // Eur. J. Soil Biol. 2011. V. 47. № 3. P. 169–174. https://doi.org/10.1016/j.ejsobi.2011.04.002
  55. Teotónio I., Silva C.M., Cruz C.O. Economics of green roofs and green walls: A literature review // Sustainable Cities and Society. 2021. V. 69. P. 102781. https://doi.org/10.1016/j.scs.2021.102781
  56. Vasenev V.I., Ananyeva N.D., Makarov O.A. Specific features of the ecological functioning of urban soils in Moscow and Moscow oblast // Eurasian Soil Science. 2012. V. 45. № 2. P. 194–205. https://doi.org/10.1134/S1064229312020147
  57. Vasenev V.I., Smagin A.V., Ananyeva N.D., Ivashchenko K.V., Gavrilenko E.G., Prokofeva T.V., Patlseva A., Stoorvogel J.J., Gosse D.D., Valentini R. Urban soil’s functions: Monitoring, assessment, and management // Adaptive Soil Management: From Theory to Practices. 2017. P. 359–409. https://doi.org/10.1007/978-981-10–3638-5_18
  58. Vasenev V.I., Van Oudenhoven A.P.E., Romzaykina O.N., Hajiaghaeva R.A. The ecological functions and ecosystem services of urban and technogenic soils: from theory to practice (a review) // Eurasian Soil Science. 2018. V. 51. № 10. P. 1119–132. https://doi.org/10.1134/S1064229318100137
  59. Vinogradova Y.A., Kovaleva V.A., Perminova E.M., Shakhtarova O.V., Lapteva E.M. Zonal Patterns of changes in the taxonomic composition of culturable microfungi isolated from permafrost peatlands of the European Northeast // Diversity. 2023. V. 15. №. 5. P. 639.
  60. Wardle D.A. Changes in the microbial biomass and metabolic quotient during leaf litter succession in some new zealand forest and scrubland ecosystems // Functional Еcology. 1993. V. 7. № 3. P. 346–355.
  61. Young T., Cameron D.D., Sorrill J., Edwards T., Phoenix, G.K. Importance of different components of green roof substrate on plant growth and physiological performance // Urban For. Urban Green. 2014.V. 13. № 3. P. 507–516.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Sampling points for agrochemical and microbiological tests on the common map of the Zaryadye Park (1: 500)

Baixar (912KB)
3. Fig. 2. The carbon content of microbial biomass (SMOK) in May (A) and September (B), basal breathing (BD) in May (C) and September (D), Microbial metabolic coefficient (QCO2) in May (E) and September (F) in the soils (0–10 cm) of various landscaping zones of the park. The values ​​with different letters are significant (p <0.05) differ for different landscape zones (Anova, the criterion of Tyuki).

Baixar (923KB)
4. Fig. 3. The functional structure of the microbial community of soils of the landscape zones of the Zaryadye Park in May (A) and September (B).

Baixar (223KB)
5. Fig. 4. The functional variety of soils of various landscape zones, designed using the Shannon index for May (A) and September (B).

Baixar (300KB)
6. Fig. 5. Biplot analysis of the main components (PCA) of microbiological (functional diversity, respiratory activity) and agrochemical (pH, BD, OV, N, NO3, NH4) soil indicators of landscapes analogs

Baixar (571KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».