


Vol 117, No 7 (2016)
- Year: 2016
- Articles: 12
- URL: https://bakhtiniada.ru/0031-918X/issue/view/10122
Structure, Phase Transformations, and Diffusion
Structure of quenched alloys of the Ti–Pd system
Abstract
The quenched alloys of the Ti–Pd system containing 2–15 at % Pd have been studied using X-ray diffraction analysis, optical metallography, transmission electron microscopy, and measurements of the microhardness. It has been found that, in the course of quenching, epy alloys containing 2, 3, and 5 at % Pd undergo a eutectoid decomposition into the α phase and Ti2Pd intermetallic compound, and the Ti–7 at % Pd and Ti–9 at % Pd alloys undergo a β → α' martensitic transformation. In the alloys with Pd contents of more than 9 at %, the β phase is fixed in the metastable state. The complete stabilization of the β phase takes place in the alloys containing 11 at % Pd and more. It has been found that the formation of the orthorhombic α" phase and metastable ω phase in the quenched alloys of this system does not occur.



Phase diagram of the Co–Al–W system. structure and phase transformations near the Co3(Al, W) intermetallic composition range
Abstract
Low-temperature portion of the polythermal section for the Co–Al–W system in the vicinity of the Co3(Al, W) intermetallic composition has been studied experimentally using electron microscopy and hightemperature X-ray diffraction analysis. Low-temperature structural phase transformations and temperature ranges of the existence of phases have been determined. The morphology of Co3(Al, W) intermetallic particles was studied as a function of the tungsten content in alloys.



Electron microscopic investigation of aging in the Cu–0.06% Zr alloy
Abstract
The decomposition of supersaturated solid solution in the Cu–0.06 wt% Zr alloy has been investigated. Upon aging of the initially quenched alloy the homogeneous precipitation of particles is dominating. The decomposition begins from the precipitation of a metastable copper–zirconium phase, the particles of which have the shape of nanodimensional disks. An increase in the aging temperature results in the formation of coarser rodlike particles of the Cu5Zr equilibrium phase. Aging of the deformed alloy is characterized by the predominance of the heterogeneous precipitation of particles at subboundaries and dislocations, and the decomposition begins at a lower temperature. The particle size is less by an order of magnitude than that in the quenched state. The precipitation of nanodimensional particles at dislocations retards the formation of recrystallization centers.



Zirconium–nickel crystals—hydrogen accumulators: Dissolution and penetration of hydrogen atoms in alloys
Abstract
The calculation of the free energy, thermodynamic equilibrium equations, and kinetic equations of the intermetallic compound Zr2NiHx has been carried out based on molecular-kinetic concepts. The equilibrium hydrogen concentration depending on the temperature, pressure, and energy parameters has been calculated. The absorption–desorption of hydrogen has been studied, and the possibility of the realization of the hysteresis effect has been revealed. The kinetics of the dissolution and permeability of hydrogen is considered, the time dependence of these values has been found, and conditions for the extremum character of their time dependence have been determined. Relaxation times of the dissolution and permeability of hydrogen into the alloy have been calculated. The calculation results are compared with the experimental data available in the literature.



Structural and phase changes in carbides of the high-speed steel upon heat treatment
Abstract
The effect of austenitizing temperature on structural and phase changes in carbides of the tungsten–molybdenum high-speed steel has been studied. The results of metallographic analysis and energy dispersive microanalysis have been discussed. It has been shown that an increase in austenitizing temperature from 1180 to 1260°C causes structural transformations in carbide particles of eutectic origin crushed upon hot plastic deformation, which are related to their dissolution and coalescence, and changes in the phase composition of the carbides themselves.



Strength and Plasticity
Effect of deformation texture on the anisotropy of elasticity and damage of two-phase steel sheets
Abstract
The effect of small tensile deformation (3, 6, and 10%) on the texture of preliminary annealed sheets of two-phase DP600 steel (0.10 C, 0.15 Si, 1.4 Mn, 0.007 P, 0.008 S, 0,009 N, 0.02–0,06 Al, 1 Cr–Mo–Ni (wt %)) is studied. Against the background of the annealing texture in the sheets, the {001} <110>, {111} <110>, {111} <112>, {111} <312> components of the slip texture and {115} <110>, {115} <552>, {221} <110>, {221} <114> orientations are developed, which can be associated with the twinning processes. The anisotropy pattern of the Young’s modulus (E) in the sheet plane remains the same after tensile deformation of the annealed sheets. After tension, the values of E decrease in all directions as a result of the onset and development of microdamages. The anisotropy of damage (D) in the plane of the steel sheets after tension is characterized by a maximum in the transverse direction (TD) and a minimum in the rolling direction (RD).



Kinetics and fracture behavior under cycle loading of an Al–Cu–Mg–Ag alloy
Abstract
The behavior of aluminum alloy AA2139 subjected to T6 treatment, including solution treatment and artificial aging, has been studied using cyclic loading with a constant total strain amplitude. Upon low-cyclic fatigue in the range of total strain amplitudes εac of 0.4–1.0%, the cyclic behavior of the AA2139-T6 alloy is determined by the processes that occur under the conditions of predominance of the elastic deformation over plastic deformation. The AA2139 alloy exhibits stability to cyclic loading without significant softening. The stress-strained state of the alloy upon cyclic loading can be described by the Hollomon equation with the cyclic strength coefficient K' and the cyclic strain-hardening exponent n' equal to 641 MPa and 0.066, respectively. The dependence of the number of cycles to fracture on the loading amplitude and its components (amplitudes of the plastic and elastic deformation) is described by a Basquin–Manson–Coffin equation with the parameters σ′/E = 0.014, b =–0.123, ε′f= 178.65, and c =–1.677.



Influence of Nd and Y on texture of as-extruded Mg–5Li–3Al–2Zn alloy
Abstract
Mg–5Li–3Al–2Zn alloys with the additions of Y and Nd were prepared using induction melting furnace under the atmosphere of pure argon; then they were extruded. The textures of the as-extruded alloys were analyzed by pole figures and electron backscatter diffraction. Results show that the addition of a small amount of Nd can weaken the basal texture. The further increase of Nd content has no corresponding further influence on texture. When a small amount of Y is used to replace Nd, the basal texture can be further weakened and the prismatic slip system can be further activated. In the alloy of Mg–5Li–3Al–2Zn–1.2Y–0.8Nd, the basal textures almost vanish.



Effect of alloying on superplasticity of two-phase brasses
Abstract
Superplasticity characteristics of two-component and multicomponent brasses in the temperature range 525–600°C have been investigated at tension tests under the conditions of stepwise enhancement in the strain rate and when maintaining a constant strain rate of 1 × 10–3 s–1. The effective energy for activating superplastic deformation has been determined. It has been shown that brass alloyed with aluminum, tin, and iron exhibits large elongations and less porosity due to superplastic deformation. Changes in the granular structure and sample surfaces have been analyzed after deformation, and signs of grain-boundary sliding and intragrain deformation have been revealed in the alloys studied.



Theory of Metals
Ground state of the one-dimensional half-filled Hubbard model
Abstract
We investigate the ground state (T = 0 K) of the one-dimensional symmetrical (n = 1) Hubbard model formalized in terms of the system of integral equations, which we previously obtained using the method of the generating functional of Green’s functions with the subsequent Legendre transformation. In a wide range of variations in the parameter of Coulomb interaction U, the following characteristics of the system have been calculated: the electron density of states, the electron band spectrum, the number of doubly occupied lattice sites, the localized magnetic moment, the correlator of the square of the longitudinal component of spin at a site,<SZ2>, and the internal energy of the system. It has been shown that, for all U > 0, the model yields two solutions, i.e., an antiferromagnetic insulator and a paramagnetic insulator, in which there are no single-electron quasi-particles at the Fermi level. The energy of the paramagnetic solution in the region of U < 1.1 is considerably less than that of the antiferromagnetic solution for the case of U > 1.1, we have the opposite situation.



Electronic structure of UO2.12 calculated in the coherent potential approximation taking into account strong electron correlations and spin-orbit coupling
Abstract
Based on the coherent potential approximation, the method of calculating the electronic structure of nonstoichiometric and hyperstoichiometric compounds with strong electron correlations and spin-orbit coupling has been developed. This method can be used to study both substitutional and interstitial impurities, which is demonstrated based on the example of the hyperstoichiometric UO2.12 compound. The influence of the coherent potential on the electronic structure of compounds has been shown for the nonstoichiometric UO1.87 containing vacancies in the oxygen sublattice as substitutional impurities, for stoichiometric UO2 containing vacancies in the oxygen sublattice and oxygen as an interstitial impurity, and for hyperstoichiometric UO2.12 with excess oxygen also as interstitial impurity. In the model of the uniform distribution of impurities, which forms the basis of the coherent potential approximation, the energy spectrum of UO2.12 has a metal-like character.



Electrical and Magnetic Properties
Embrittlement and conditions of the optimization of magnetic properties in the amorphous alloy Co69Fe3.7Cr3.8Si12.5B11 in the absence of a viscous–brittle transition
Abstract
The influence of the holding time upon annealing on the temperature of the viscous–brittle transition (temperature of embrittlement) Tf in a cobalt-based amorphous alloy of the composition Co69Fe3.7Cr3.8Si12.5B11 with a very low saturation magnetostriction λs (<10–7) has been studied. It has been established that the dependence of the embrittlement temperature Tf on the of time of holding ta can be described by an Arrhenius equation and that the embrittlement at the annealing temperatures above and below 300°C is described by different kinetic parameters. In the alloy under study, irrespective of the holding time, embrittlement occurs in a very narrow range of annealing temperatures, which does not exceed 5 K. Based on the experimental data on the evolution of the hysteresis magnetic properties upon the isochronous annealings and upon the isothermal holding, the regime of heat treatment that ensures a very high (about 50000) magnitude of the permeability µ5 (H = 5 mOe, f = 1 kHz) without the transition of the alloy into a brittle state has been determined.


