Dynamics of Spectral Composition of Fluorescence of Cold Atoms in External Electric and Magnetic Fields
- 作者: Bozhokin S.V.1, Sokolov I.M.1
-
隶属关系:
- Peter the Great St. Petersburg Polytechnic University
- 期: 卷 125, 编号 3 (2018)
- 页面: 317-323
- 栏目: Spectroscopy and Physics of Atoms and Molecules
- URL: https://bakhtiniada.ru/0030-400X/article/view/165783
- DOI: https://doi.org/10.1134/S0030400X18090060
- ID: 165783
如何引用文章
详细
A consistent quantum-mechanical approach is used to calculate a fluorescence signal from a cold atomic ensemble excited by pulsed radiation and exposed to a DC electric or magnetic field. The short time Fourier transform is used to analyze the spectral composition of this signal and to investigate its changes over time after the end of excitation. It is demonstrated that external fields substantially change both the shape of the spectrum and its dynamics. The discovered effects are explained as being the result of action of these fields on the spectrum of states of the two-atomic quasi-molecular clusters that randomly form in disordered ensembles.
作者简介
S. Bozhokin
Peter the Great St. Petersburg Polytechnic University
编辑信件的主要联系方式.
Email: bsvjob@mail.ru
俄罗斯联邦, St. Petersburg, 195251
I. Sokolov
Peter the Great St. Petersburg Polytechnic University
Email: bsvjob@mail.ru
俄罗斯联邦, St. Petersburg, 195251
补充文件
