Iterative Learning Control with an Improved Internal Model for a Monitoring Automatic-Gauge-Control System


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The long time delay in the monitoring automatic gauge control (AGC) of strip rolling by a tandem hot mill adversely affects system stability. To solve this problem, internal model control (IMC) and iterative learning control were applied to a monitoring-AGC system. A mathematical model of the hydraulic gap control system was established focusing on the seventh stand of a 1450-mm tandem hot mill in a factory. Model parameters were identified employing a particle swarm optimization algorithm. Using the identified hydraulic gap control model, a monitoring AGC system with an improved internal model (IIMC-MNAGC) and an iterative-learning-control strategy for an improved-internal-model monitoring AGC system (ILC-IIMC-MNAGC) were established. Finally, simulation experiments for IIMC-MNAGC and ILC-IIMC-MNAGC were conducted using MATLAB/Simulink software. The simulation results show that for the IIMC-MNAGC system, when the model matches, the rising time reaches 43.6 msec, the overshot reaches 4.34%, the integral square error (ISE) reaches 0.0131, and the Hα norm reaches 2.953. These levels are acceptable for the MN-AGC system. When there is model mismatch due to the inaccuracy of the pure delay, for the IIMC-MNAGC system, the rising time increases to 263.5 msec and the overshot increases to 36.7%, which are unacceptable for the monitoring AGC system. When there is model mismatch for the ILC-IIMC-MNAGC system, the rising time reaches 38.9 msec, the overshot reaches 1.37%, the ISE reaches 0.0095, and the Hα norm reaches 2.989. These levels are acceptable for the monitoring AGC system.

Об авторах

Yin Fang-chen

State Key Laboratory of Rolling and Automation, Northeastern University

Автор, ответственный за переписку.
Email: yfc_ral@163.com
Китай, Shenyang, 110819

Zhang Dian-hua

State Key Laboratory of Rolling and Automation, Northeastern University

Email: yfc_ral@163.com
Китай, Shenyang, 110819

Li Xu

State Key Laboratory of Rolling and Automation, Northeastern University

Email: yfc_ral@163.com
Китай, Shenyang, 110819

Sun Jie

State Key Laboratory of Rolling and Automation, Northeastern University

Email: yfc_ral@163.com
Китай, Shenyang, 110819

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Springer Science+Business Media New York, 2016

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».