Микротрубки ZnO: механизм формирования и лазерный эффект на модах шепчущей галереи

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

С помощью фотолюминесцентной спектроскопии исследованы люминесцентные и лазерные свойства микротрубок ZnO, синтезированных модифицированным методом термического испарения. Показано, что лазерная генерация в ближнем УФ-диапазоне возбуждается на модах шепчущей галереи. Продемонстрирована возможность достижения низких порогов лазерной генерации (вплоть до ~8 кВт/см2) и высоких оптических добротностей (свыше 3900). Предложен механизм формирования таких микрокристаллов, основанный на предположении об одновременном росте и травлении вдоль кристаллографического направления [0001].

Полный текст

Доступ закрыт

Об авторах

А. П. Тарасов

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Автор, ответственный за переписку.
Email: tarasov.a@crys.ras.ru
Россия, Москва

Л. А. Задорожная

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: tarasov.a@crys.ras.ru
Россия, Москва

Б. В. Набатов

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: tarasov.a@crys.ras.ru
Россия, Москва

В. М. Каневский

Институт кристаллографии им. А.В. Шубникова Курчатовского комплекса кристаллографии и фотоники НИЦ “Курчатовский институт”

Email: tarasov.a@crys.ras.ru
Россия, Москва

Список литературы

  1. Morkoc H., Ozgur U. Zinc oxide: fundamentals, materials and device technology. Weinheim: Wiley-VCH, 2009.
  2. Sharma D.K., Shukla S., Sharma K.K., Kumar V. // Mater. Today. 2022. V. 49. P. 3028. https://doi.org/10.1016/j.matpr.2020.10.238
  3. Klingshirn C.F. Semiconductor Optics. Berlin: Springer, 2012.
  4. Srivastava V., Gusain D., Sharma Y.C. // Ceram. Int. 2013. V. 39. P. 9803. https://doi.org/10.1016/j.ceramint.2013.04.110
  5. Oprea O., Andronescu E., Ficai D. et al. // Curr. Org. Chem. 2014. V. 18. P. 192.
  6. Uikey P., Vishwakarma K. // Int. J. Emerg. Tech. Comp. Sci. Electron. 2016. V. 21. P. 239.
  7. Di Mauro A., Fragalà M.E., Privitera V., Impellizzeri G. // Mater. Sci. Semicond. Process. 2017. V. 69. P. 44. https://doi.org/10.1016/j.mssp.2017.03.029
  8. Тарасов А.П., Веневцев И.Д., Муслимов А.Э. и др. // Квантовая электроника. 2021. Т. 51. С. 366.
  9. Znaidi L., Illia G.S, Benyahia S. et al. // Thin Solid Films. 2003. V. 428. P. 257. https://doi.org/10.1016/S0040-6090(02)01219-1
  10. Dong H., Zhou B., Li J. et al. // J. Materiomics. 2017. V. 3. P. 255. https://doi.org/10.1016/j.jmat.2017.06.001
  11. Tashiro A., Adachi Y., Uchino T. // J. Appl. Phys. 2023. V. 133. P. 221101. https://doi.org/10.1063/5.0142719
  12. Xu C., Dai J., Zhu G. et al. // Las. Photon. Rev. 2014. V. 8. P. 469. https://doi.org/10.1002/lpor.20130012
  13. Yang Y.D., Tang M., Wang F.L. et al. // Photonics Res. 2019. V. 7. P. 594. https://doi.org/10.1364/PRJ.7.000594
  14. Chen R., Ling B., Sun X.W., Sun H.D. // Adv. Mater. 2011. V. 23. P. 2199. https://doi.org/10.1002/adma.201100423
  15. Michalsky T., Wille M., Dietrich C.P. et al. // Appl. Phys. Lett. 2014. V. 105. P. 211106. https://doi.org/10.1063/1.4902898
  16. Qin F., Xu C., Lei D.Y. et al. // ACS Photonics. 2018. V. 5. P. 2313. https://doi.org/10.1021/acsphotonics.8b00128
  17. Tarasov A.P., Muslimov A.E., Kanevsky V.M. // Photonics. 2022. V. 9. P. 871. https://doi.org/10.3390/photonics9110871
  18. Тарасов А.П., Задорожная Л.А., Муслимов А.Э. и др. // Письма в ЖЭТФ. 2021. Т. 114. С. 596. https://doi.org/10.31857/S1234567821210035
  19. Тарасов А.П., Лавриков А.С., Задорожная Л.А., Каневский В.М. // Письма в ЖЭТФ. 2022. Т. 115. С. 554. https://doi.org/10.31857/S1234567822090026
  20. Tarasov A.P., Zadorozhnaya L.A., Kanevsky V.M. // J. Appl. Phys. 2024. V. 136. P. 073102. https://doi.org/10.1063/5.0214420
  21. Li L.E., Demianets L.N. // Opt. Mater. 2008. V. 30. P. 1074. https://doi.org/10.1016/j.optmat.2007.05.013
  22. Демьянец Л.Н., Ли Л.Е., Лавриков А.С., Никитин С.В. // Кристаллография. 2010. Т. 55. С. 149.
  23. Zadorozhnaya L.A., Tarasov A.P., Lavrikov A.S., Kanevsky V.M. // Comp. Opt. 2024. V. 48. P. 696. https://doi.org/10.18287/2412-6179-CO-1414
  24. Dong H., Sun L., Xie W. et al. // J. Phys. Chem. C. 2010. V. 114. P. 17369. https://doi.org/10.1021/jp1047908
  25. Тарасов А.П., Задорожная Л.А., Каневский В.М. // Письма в ЖЭТФ. 2024. Т. 119. С. 875. https://dx.doi.org/10.31857/S1234567824120024
  26. Wagner R.S. // J. Crystal Growth. 1968. V. 3/4. P. 159.
  27. Kaldis E. // Crystal Growth and Characterization. Amsterdam: North Holland, 1975.
  28. Sharma R.B. // J. Appl. Phys. 1970. V. 41. P. 1866. https://doi.org/10.1063/1.1659122
  29. Tarasov A.P., Muslimov A.E., Kanevsky V.M. // Materials. 2022. V. 15. P. 8723. https://doi.org/10.3390/ma15248723
  30. Tarasov A.P., Ismailov A.M., Gadzhiev M.K. et al. // Photonics. 2023. V. 10. P. 1354. https://doi.org/10.3390/photonics10121354
  31. Ozgur U., Alivov Y.I., Liu C. et al. // J. Appl. Phys. 2005. V. 98. P. 41301. https://doi.org/10.1063/1.1992666
  32. Ghosh M., Ningthoujam R.S., Vatsa R.K. et al. // J. Appl. Phys. 2011. V. 110. P. 054309. https://doi.org/10.1063/1.3632059
  33. Zhang Z., Yates Jr. J.T. // Chem. Rev. 2012. V. 112. P. 5520. https://doi.org/10.1021/cr3000626
  34. Guo B., Qiu Z.R., Wong K.S. // Appl. Phys. Lett. 2003. V. 82. P. 2290. https://doi.org/10.1063/1.1566482
  35. Dai J., Xu C.X., Wu P. et al. // Appl. Phys. Lett. 2010. V. 97. P. 011101. https://doi.org/10.1063/1.3460281
  36. Тарасов А.П., Брискина Ч.М., Маркушев В.М. и др. // Письма в ЖЭТФ. 2019. Т. 110. С. 750. https://doi.org/10.1134/S0370274X19230073
  37. Zimmler M.A., Bao J., Capasso F. et al. // Appl. Phys. Lett. 2008. V. 93. P. 051101. https://doi.org/10.1063/1.2965797
  38. Czekalla C., Sturm C., Schmidt-Grund R. et al. // Appl. Phys. Lett. 2008. V. 92. P. 241102. https://doi.org/10.1063/1.2946660
  39. Wiersig J. // Phys. Rev. A. 2003. V. 67. P. 023807. https://doi.org/10.1103/PhysRevA.67.023807
  40. Liu J., Lee S., Ahn Y. et al. // Appl. Phys. Lett. 2008. V. 92. P. 263102. https://doi.org/10.1063/1.2952763

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. РЭМ-изображение микротрубки ZnO (на вставке показан массив микротрубок).

Скачать (163KB)
3. Рис. 2. РЭМ-изображения микростержней ZnO: а – начало процесса травления микростержня со стороны поверхности (0001), б – образование гексагональной ямки на торце микростержня.

Скачать (267KB)
4. Рис. 3. Спектры ФЛ массива микротрубок ZnO, зарегистрированные при низкоинтенсивном квазинепрерывном возбуждении (а) и импульсном лазерном возбуждении с плотностью мощности ρexc ~ 6 кВт/см2 (б).

Скачать (128KB)
5. Рис. 4. Спектры близкраевого излучения микротрубки ZnO при различных плотностях мощности возбуждения ρexc: 1 – 7, 2 – 13, 3 – 26 кВт/см2 (а); зависимость интенсивности от ρexc в области наиболее интенсивной лазерной линии с длиной волны ~392.05 нм (б).

Скачать (192KB)
6. Рис. 5. Спектр лазерной генерации одной из микротрубок ZnO при ρexc ~ 0.1 МВт/см².

Скачать (94KB)
7. Рис. 6. Смоделированная по формуле (3) зависимость λWGM(D) для МШГ с ТЕ-поляризацией (косые кривые) и экспериментально зарегистрированные спектральные положения лазерных линий (горизонтальные линии) согласно рис. 5. Стрелка соответствует диаметру D, при котором наблюдается наиболее точное совпадение положений лазерных линий и соседних ТЕ-мод.

Скачать (113KB)

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».